00001 /*This file is prepared for Doxygen automatic documentation generation.*/ 00017 /* Copyright (c) 2009 Atmel Corporation. All rights reserved. 00018 * 00019 * Redistribution and use in source and binary forms, with or without 00020 * modification, are permitted provided that the following conditions are met: 00021 * 00022 * 1. Redistributions of source code must retain the above copyright notice, this 00023 * list of conditions and the following disclaimer. 00024 * 00025 * 2. Redistributions in binary form must reproduce the above copyright notice, 00026 * this list of conditions and the following disclaimer in the documentation 00027 * and/or other materials provided with the distribution. 00028 * 00029 * 3. The name of Atmel may not be used to endorse or promote products derived 00030 * from this software without specific prior written permission. 00031 * 00032 * 4. This software may only be redistributed and used in connection with an Atmel 00033 * AVR product. 00034 * 00035 * THIS SOFTWARE IS PROVIDED BY ATMEL "AS IS" AND ANY EXPRESS OR IMPLIED 00036 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF 00037 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT ARE 00038 * EXPRESSLY AND SPECIFICALLY DISCLAIMED. IN NO EVENT SHALL ATMEL BE LIABLE FOR 00039 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES 00040 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 00041 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND 00042 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 00043 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS 00044 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE 00045 * 00046 */ 00047 00048 #include <avr32/io.h> 00049 #include "compiler.h" 00050 #include "preprocessor.h" 00051 #include "intc.h" 00052 00053 // define _evba from exception.S 00054 extern void _evba; 00055 00057 extern const unsigned int ipr_val[AVR32_INTC_NUM_INT_LEVELS]; 00058 00061 #if (defined __GNUC__) 00062 #define DECL_INT_LINE_HANDLER_TABLE(GRP, unused) \ 00063 static volatile __int_handler _int_line_handler_table_##GRP[Max(AVR32_INTC_NUM_IRQS_PER_GRP##GRP, 1)]; 00064 #elif (defined __ICCAVR32__) 00065 #define DECL_INT_LINE_HANDLER_TABLE(GRP, unused) \ 00066 static volatile __no_init __int_handler _int_line_handler_table_##GRP[Max(AVR32_INTC_NUM_IRQS_PER_GRP##GRP, 1)]; 00067 #endif 00068 MREPEAT(AVR32_INTC_NUM_INT_GRPS, DECL_INT_LINE_HANDLER_TABLE, ~); 00069 #undef DECL_INT_LINE_HANDLER_TABLE 00070 00073 static const struct 00074 { 00075 unsigned int num_irqs; 00076 volatile __int_handler *_int_line_handler_table; 00077 } _int_handler_table[AVR32_INTC_NUM_INT_GRPS] = 00078 { 00079 #define INSERT_INT_LINE_HANDLER_TABLE(GRP, unused) \ 00080 {AVR32_INTC_NUM_IRQS_PER_GRP##GRP, _int_line_handler_table_##GRP}, 00081 MREPEAT(AVR32_INTC_NUM_INT_GRPS, INSERT_INT_LINE_HANDLER_TABLE, ~) 00082 #undef INSERT_INT_LINE_HANDLER_TABLE 00083 }; 00084 00085 00090 #if (defined __GNUC__) 00091 __attribute__((__interrupt__)) 00092 #elif (defined __ICCAVR32__) 00093 __interrupt 00094 #endif 00095 static void _unhandled_interrupt(void) 00096 { 00097 // Catch unregistered interrupts. 00098 while (TRUE); 00099 } 00100 00101 00111 __int_handler _get_interrupt_handler(unsigned int int_level) 00112 { 00113 // ICR3 is mapped first, ICR0 last. 00114 // Code in exception.S puts int_level in R12 which is used by AVR32-GCC to 00115 // pass a single argument to a function. 00116 unsigned int int_grp = AVR32_INTC.icr[AVR32_INTC_INT3 - int_level]; 00117 unsigned int int_req = AVR32_INTC.irr[int_grp]; 00118 00119 // As an interrupt may disappear while it is being fetched by the CPU 00120 // (spurious interrupt caused by a delayed response from an MCU peripheral to 00121 // an interrupt flag clear or interrupt disable instruction), check if there 00122 // are remaining interrupt lines to process. 00123 // If a spurious interrupt occurs, the status register (SR) contains an 00124 // execution mode and interrupt level masks corresponding to a level 0 00125 // interrupt, whatever the interrupt priority level causing the spurious 00126 // event. This behavior has been chosen because a spurious interrupt has not 00127 // to be a priority one and because it may not cause any trouble to other 00128 // interrupts. 00129 // However, these spurious interrupts place the hardware in an unstable state 00130 // and could give problems in other/future versions of the CPU, so the 00131 // software has to be written so that they never occur. The only safe way of 00132 // achieving this is to always clear or disable peripheral interrupts with the 00133 // following sequence: 00134 // 1: Mask the interrupt in the CPU by setting GM (or IxM) in SR. 00135 // 2: Perform the bus access to the peripheral register that clears or 00136 // disables the interrupt. 00137 // 3: Wait until the interrupt has actually been cleared or disabled by the 00138 // peripheral. This is usually performed by reading from a register in the 00139 // same peripheral (it DOES NOT have to be the same register that was 00140 // accessed in step 2, but it MUST be in the same peripheral), what takes 00141 // bus system latencies into account, but peripheral internal latencies 00142 // (generally 0 cycle) also have to be considered. 00143 // 4: Unmask the interrupt in the CPU by clearing GM (or IxM) in SR. 00144 // Note that steps 1 and 4 are useless inside interrupt handlers as the 00145 // corresponding interrupt level is automatically masked by IxM (unless IxM is 00146 // explicitly cleared by the software). 00147 // 00148 // Get the right IRQ handler. 00149 // 00150 // If several interrupt lines are active in the group, the interrupt line with 00151 // the highest number is selected. This is to be coherent with the 00152 // prioritization of interrupt groups performed by the hardware interrupt 00153 // controller. 00154 // 00155 // If no handler has been registered for the pending interrupt, 00156 // _unhandled_interrupt will be selected thanks to the initialization of 00157 // _int_line_handler_table_x by INTC_init_interrupts. 00158 // 00159 // exception.S will provide the interrupt handler with a clean interrupt stack 00160 // frame, with nothing more pushed onto the stack. The interrupt handler must 00161 // manage the `rete' instruction, what can be done thanks to pure assembly, 00162 // inline assembly or the `__attribute__((__interrupt__))' C function 00163 // attribute. 00164 return (int_req) ? _int_handler_table[int_grp]._int_line_handler_table[32 - clz(int_req) - 1] : NULL; 00165 } 00166 00168 static __inline__ void INTC_init_evba(void) 00169 { 00170 Set_system_register(AVR32_EVBA, (int)&_evba ); 00171 } 00172 00173 void INTC_init_interrupts(void) 00174 { 00175 unsigned int int_grp, int_req; 00176 00177 INTC_init_evba(); 00178 00179 // For all interrupt groups, 00180 for (int_grp = 0; int_grp < AVR32_INTC_NUM_INT_GRPS; int_grp++) 00181 { 00182 // For all interrupt request lines of each group, 00183 for (int_req = 0; int_req < _int_handler_table[int_grp].num_irqs; int_req++) 00184 { 00185 // Assign _unhandled_interrupt as default interrupt handler. 00186 _int_handler_table[int_grp]._int_line_handler_table[int_req] = &_unhandled_interrupt; 00187 } 00188 00189 // Set the interrupt group priority register to its default value. 00190 // By default, all interrupt groups are linked to the interrupt priority 00191 // level 0 and to the interrupt vector _int0. 00192 AVR32_INTC.ipr[int_grp] = ipr_val[AVR32_INTC_INT0]; 00193 } 00194 } 00195 00196 00197 void INTC_register_interrupt(__int_handler handler, unsigned int irq, unsigned int int_level) 00198 { 00199 // Determine the group of the IRQ. 00200 unsigned int int_grp = irq / AVR32_INTC_MAX_NUM_IRQS_PER_GRP; 00201 00202 // Store in _int_line_handler_table_x the pointer to the interrupt handler, so 00203 // that _get_interrupt_handler can retrieve it when the interrupt is vectored. 00204 _int_handler_table[int_grp]._int_line_handler_table[irq % AVR32_INTC_MAX_NUM_IRQS_PER_GRP] = handler; 00205 00206 // Program the corresponding IPRX register to set the interrupt priority level 00207 // and the interrupt vector offset that will be fetched by the core interrupt 00208 // system. 00209 // NOTE: The _intx functions are intermediate assembly functions between the 00210 // core interrupt system and the user interrupt handler. 00211 AVR32_INTC.ipr[int_grp] = ipr_val[int_level & (AVR32_INTC_IPR_INTLEVEL_MASK >> AVR32_INTC_IPR_INTLEVEL_OFFSET)]; 00212 }