
Reviving Lisp for smaller programmable machines
Raman Gopalan

Volunteer free software programmer, SimpleMachines, Italy

April 2015

Accepted for publication in “Electronics for you”, India (Article number: 9960)

Abstract — “if some languages claim to be the Swiss army

knife of programming, then Pico Lisp may well be called the

scalpel of programming: sharp, accurate, small, lightweight

but also dangerous in the hands of the inexperienced”. Lisp

offers a practical mathematical notation to write computer

programs, mostly being influenced by lambda calculus. It is

still the most favored programming language for artificial

intelligence research.

Programming microcontrollers is a real challenge, given the

complexity of today’s microcontroller architecture. The C

language is widely used to program them. The philosophy of

cross-compiling a program for the target seems to be the most

popular choice among microcontroller aficionados. An ARM

Cortex M4 clone (such as the Infineon XMC4500) typically

has about a megabyte of flash and a few hundred kilobytes of

internal RAM. With resources of that order on the chip, a

much more interesting approach is to program the device

natively with a powerful, dynamic language like Lisp.

This project aims at reviving Lisp for native, interactive and

incremental microcontroller program development by running

a dialect of Lisp as virtual machine on the target. The project

also demonstrates the power of Lisp through the execution of

various expressive Lisp programs on a microcontroller.

Keywords — Lisp; AI (Artificial Intelligence); Virtual

machines; Compilers; HAL; Interpreters; Lambda calculus;

Microcontrollers; ARM-Cortex M4; REPL (Read-evaluate-

print-loop);

I. INTRODUCTION

Dynamic languages like Lisp [1] have been in existence as

a versatile tool for rapid application development. It has

heavily influenced and furthered computation in various

fields. Myriad system programs use high level languages to

natively extend their functionality. The recent (but

nonchalant) trend of the application of dynamic languages

for programming embedded devices has seen a ramp. A lot

of interesting, practical embedded solutions have been

developed so far with such languages, supported as a part of

a virtual machine. A port of Python-2.5 to the Nintendo DS

console [2] is one such example. With an increasing

magnitude of applications being written in high-level

languages on embedded devices, there is a very high

possibility of this trend occupying a hot spot in the

embedded market for a selective set of system applications in

the near future. Figure 1 presents the system architecture of a

natively programmable, digitally controlled system.

Figure 1: General MCU software system with a VM layer

With the above architecture, it is possible to write abstract,

self-adapting middle-level drivers for hardware modules on

the microcontroller. This enables the possibility of platform

independent, native embedded software development.

Lisp is the second-oldest high-level programming language

(the first one being FORTRAN). It is known for its

association with AI. Linked lists are one of its major data

structures. One of the most interesting properties of Lisp is its

homoiconic nature. A program written in Lisp is itself

constructed with lists. The equivalence of code and data is a

major advantage. The powerful Lisp macro system heavily

depends on the fact that Lisp programs can manipulate Lisp

code as if it were data. This permits the creation of new

syntax within the context of Lisp.

Although projects like PICOBIT [3] and ARMPIT Scheme [4]

already implement a compact Lisp programming language for

a microcontroller, there are many reasons to consider yet

another dialect of Lisp for programming microcontrollers.

PICOBIT implements a Scheme system in less than 7 KB of

main memory and provides an efficient virtual machine but

fails to incorporate a powerful hardware abstraction layer for

writing efficient, portable Lisp across various hardware

architectures. ARMPIT Scheme is an implementation of the

Scheme programming language for RISC machines with an

ARM core. Its implementation is based on the description in

the R5RS standard. It is implemented in the ARM assembly

language, making the system difficult to port across various

RISC machines without an ARM core. Since the core of the

implementation is written in assembly language, the

extension of the core to support various hardware specific

features (marshalling) in Scheme becomes a herculean task.

Tools like SWIG can generate language binding code

between C and a high-level language like Scheme but given

the nature of PICOBIT’s implementation, generating ARM

assembly code for interfacing user code (mostly written in C)

with PICOBIT becomes a practical impossibility. This project

aims at providing a solution for the aforementioned concerns

by using a well-accepted dialect of Lisp called Pico Lisp [5]

and constructing hardware abstraction layers for various

hardware peripherals on the MCU to ensure efficient,

portable application development in Lisp. In addition, the

project shows how to extend Pico Lisp to include support for

hardware extensions.

II. WHY PICO LISP?

Pico Lisp is constructed as a virtual machine. It is also a
dialect of the Lisp programming language. It is written in
portable C and is easily extendable. After much research and
programming to narrow down on a Lisp implementation, Pico
Lisp was chosen as a virtual machine for the following reasons:

 Dynamic data types and structures

 Formally homoiconic

 Functional programming paradigm

 An interactive REPL

 Pilog – a declarative language with semantics of
Prolog in Pico Lisp

 Small memory footprint

 Permissive, non-copyleft free software license

At the lowest level, Pico Lisp programs are constructed from a
single data structure called "cell". A cell is a pair of machine
words, which traditionally are called CAR and CDR in the
Lisp terminology. These words can represent either a numeric
value (scalar) or the address of another cell (pointer). All
higher level data structures are built out of these cells. Pico
Lisp supports the following basic data types: numbers,
symbols and lists. As a result, Pico Lisp is one of the fastest
Lisp dialects available since only fewer options are checked at
runtime to parse a value.

Pico Lisp promotes the following key characteristics:

 Programs are written by gluing existing components

 The language is highly scalable and extensible

 Automatic memory management

 Dynamically bound and typed

 Interactive programming with symbolic interpretation

Pico Lisp in addition supports an integrated database system.
This is a huge advantage for embedded system applications
requiring a convenient facility to perform data transactions.

III. PICO LISP ON RISC MACHINES

Pico Lisp cannot be directly compiled for a 32 bit RISC
machine. There are many issues to address before one can use
the Pico Lisp REPL over the UART or TCP/IP interface on
the microcontroller. For instance, support programs such as
memory allocators are required for Pico Lisp to function
correctly. Since we intend for Pico Lisp to run on bare metal,
we use the Newlib C library [6] and implement stubs of code
for the memory allocator. We also have to concern ourselves
with issues like routing plain I/O over the UART or TCP/IP
interface of the microcontroller. Listing 1 shows an example
of a stub file written for Newlib. The file needs to be
compiled along with the Pico Lisp code base.

We also require support for an MMC interface to store Pico
Lisp programs. We can then load the Lisp programs at
runtime. This implies a requisite for a file system. We also
need to implement stubs of code for file I/O support over the
SPI protocol. For the file system, we use the FatFs FAT file
system module [7].

Once all the support programs are in place, getting Pico Lisp
to run on the microcontroller is then fairly straightforward
process. On account of its small size, it can be easily
embedded on a microcontroller (bare metal or from within
the context of an operating system) in less than 256KB of
flash. It can be easily compiled for a given architecture with a
tool-chain like GNU gcc. Currently, a Python based build
system called SCons [8] is being used to compile the code
base.

#define USE_MULTIPLE_ALLOCATOR

define CNAME(func) dl##func

#else

define CNAME(func) s##func

#endif

void *_malloc_r(struct reent *r, size_t size) {

 return CNAME(malloc)(size);

}

void _free_r(struct reent *r, void *ptr) {

 CNAME(free)(ptr);

}

void *sbrk_r(struct reent *r, ptrdiff_t incr) {

 // sbrk implementation here.

}

// _open_r looks for a device first and opens it.

int open(const char *name, int flags, mode_t mode) {

 return _open_r(_REENT, name, flags, 0);

}

Listing 1: Sample C stub file for Newlib

IV. SOFTWARE ARCHITECTURE

The overall logical software structure for running full-
fledged Pico Lisp on the microcontroller is indicated in Figure
2. It shows the communication between the Pico Lisp virtual
machine and various other modules in the code base.

Figure 2: Software system architecture for Pico Lisp

The code uses the notion of “platform” to denote a group of
CPUs that share the same core structure, although their
specific silicon implementation might differ in terms of
integrated peripherals, internal memory and other such
attributes. A port of Pico Lisp implements support code for
running Lisp on one or more CPUs from a given platform.
For example, the Infineon XMC4000 port of Pico Lisp can
run on XMC4500, XMC4400 and XMC4200 CPUs, all of
them forming a part of the XMC4000 platform. The code
base remains highly portable across various platforms and
architectures simply by using the following key principles:

 Code that is platform-independent is “common
code” and should be written in portable ANSI C as
much as possible. Pico Lisp itself is a part of the
common code section and is written this way.

 Code that is not generic (mostly peripheral and CPU
specific code) must still be made as portable as
possible by using a common interface that must be
implemented by all platforms on which Pico Lisp runs.
This interface is called “platform interface”.

 Platforms vary greatly in capabilities. The platform
interface tries to group only common attributes of

different platforms.

Access to specific functionality on a given platform
(like the High Resolution PWM module on the
XMC4400 which is not available on the XMC4500)
should be done by using a “platform module”.

A. Common code

The following provides a list of items that can be classified

as common code:

 The Pico Lisp code base with modifications to make
it work in limited memory conditions.

 Components like the ROM file system, an XMODEM
protocol implementation to receive data from another
device such as a PC, the shell, the onboard clone of
the vi text editor [9] for editing files, the TCP/IP
stack.

 C library specific code (allocators and Newlib stubs).

 Generic peripheral support code, like the ADC
support code that is independent of the actual ADC
hardware.

B. Platform interface

The platform interface allows writing extremely portable code
over a large variety of platforms, from C and Lisp. An

important property of the platform interface is that it tries to

group only common attributes of different platforms. For

example, if a platform has a UART module that can work in

loopback mode, but the others platforms lack this support, the

loopback feature will not be included in the platform interface.

The platform interface is mainly used by the generic modules

to allow Lisp code to access platform peripherals. It can also

be used by C code that wants to implement a generic module

that needs access to peripherals. For example, the drivers for

a graphical LCD device are implemented this way by using

the generic platform interface.

The platform interface is declared in the inc/platform.h

header file from source distribution. It is a collection of

various components like UART, SPI and timers. Each

component has an identifier which is a number that identifies

that component in Pico Lisp. Generally, numbers are assigned

to components in their "natural" order: for example, PORTA

will have the identifier value as 0. PORTB will have 1 and so

on. Similarly, the second SPI interface (SPI1) of the MCU

will probably have an identifier value of 1. Pin 0 in PORT1

on the Infineon XMC4500 will be called ‘P1_0 in Pico Lisp.

Similarly, pin 27 in PORTB on the Atmel at32uc3a0256 will

be called ‘PB_27 (notice the quote).

C. Platform specific modules

A platform implementation might also contain one or more

platform specific modules. Their purpose is to allow Lisp to

use the full potential of the platform peripherals -- Not just

the functionality covered by the platform interface, but also

functionality specific to the platform. For example, the Lisp

extensions for the OLED module (over SPI) on the Infineon

XMC4000 Hexagonal kits are implemented this way.

D. Booting Pico Lisp on the microcontroller

Given below is the sequence of events that occur after the

microcontroller is powered up:

The platform initialization code is executed. This program

does very low level platform setup, copies ROM contents to

the internal RAM, zeroes out the BSS section, sets up the

stack pointer and long jumps to the C main function.

1. The main function calls the platform specific

initialization function and returns a result which

can, be either a value indicating success or failure.

If it fails, main instantly blocks. A debugger can

then inspect the internals of the state machine.

2. The main function then initializes the rest of the

system: the ROM file system, XMODEM, and

terminal support.

3. If the files “/rom/autorun.l” or “/mmc/autorun.l”

exist, they are executed. If one file is found before

the other, it terminates further execution of the

other file and the context jumps to the next step. If

it returns after execution, or if the files are not

found, the boot process continues with the next

step.

4. If the boot parameter is set to 'standard' and the

shell was compiled in the image, it is started. In the

absence of the shell, the standard Pico Lisp server

is started.

V. USING PICO LISP -- MCU SOFTWARE

DEVELOPMENT

Pico Lisp can be compiled to either support a user console

over UART (the default and by far the most popular) or a

console over TCP/IP.

Pico Lisp can run on a wide variety of microcontrollers. Some

of the practical aspects of using Pico Lisp are listed below:

1. The code base is hardware independent. It proves to

be extremely portable across different architectures.

2. Programs in Pico Lisp are highly adaptable, field-

programmable and re-configurable for a variety of

practical applications.

3. Programming the MCU follows a very natural

iterative process because Pico Lisp permits the user

to develop programs in an interactive and

incremental way. The code supplies various tools to

aid in native Lisp programming (like an onboard vi-

clone text editor and an XMODEM implementation

to share files).

4. Pico Lisp is a very extensible piece of software.

Adding support for newer peripherals or modules is a

naturally smooth process.

5. The code bears a royalty-free, permissive, non-

copyleft free software license. This permits code

reuse within a proprietary digital base.

VI. E X A M P L E S

 Once we have Pico Lisp running on the board, one can

access all MCU peripherals from Lisp. Symbols can be passed

around, manipulated and inspected at runtime. Let us now see

a few examples on how this can be done.

A. Hello world - blinking the LED

Listing 2 shows a simple Pico Lisp program which toggles an

LED on the board every second. The quoted symbols PB_29

and PX_16 are Pico Lisp symbols which correspond to the pin

number 29 on PORTB and pin number 16 on PORTX

respectively. The parsing of these values is done in the generic

PIO Lisp module (via the hardware abstraction layer).

Transient symbols *pio-output* and *pio-input*

are used to set directions to the port pins. To see how these

values are in Pico Lisp, see [10].

A simple infinite loop reads the button on the input pin and
toggles the LED if pressed.

A sample for user-buttons.

Declare pins

(setq led 'PB_29 button 'PX_16)

A simple delay function

(de delay (t)

(tmr-delay 0 t))

Make sure the LED starts in

the "off" position and enable

input/output pins

(de init-pins ()

(pio-pin-sethigh led)

(pio-pin-setdir *pio-output* led)

(pio-pin-setdir *pio-input* button))

And now, the main loop

(de prog-loop ()

(init-pins)

(loop

(if (= 0 (pio-pin-getval button))

(pio-pin-setlow led)

(delay 100000)

(pio-pin-sethigh led)

(delay 100000))))

(prog-loop)

Listing 2: Programming usr buttons in PicoLisp

B. Send a byte to the I2C multiplexer

Listing 3 is a Pico Lisp program that can be used to send a

byte of data to a slave device over the I2C multiplexer. The

I2C module for Pico Lisp is platform agnostic. Most platforms

(including the XMC4000) include an I2C interface. Please

note: The program in Listing 3 works on an Atmel

AT32UC3A0512 microcontroller. The print operation (prinl)

prints the output on the Pico Lisp console (UART or TCP/IP).

Send byte to i2c mux to enable left i2c bus

(setq

Send a byte to the i2c multiplexer to tell

it # enable the left i2c bus

(setq

to

id 0 # Which i2c bus to use?
mux-addr 112 # The slave address of the i2c mux

mux-disable 0 # Control word to disable the mux
mux-left 4 # Control word to enable left bus

mux-right 5) # Control word to enable right bus

(i2c-

start

0)

(if

(not

(= T

(i2c-

addre

ss id

m

u

x

-

a

d

d

r

*

i

2

c

-

t

r

a

id 0 # Which i2c bus to use?
mux-addr 112 # The slave address of the i2c mux
mux-disable 0 # Control word to disable the mux
mux-left 4 # Control word to enable left bus
mux-right 5) # Control word to enable right bus

(i2c-start 0)

(if (not (= T (i2c-address id

mux-addr

i2c-transmitter)))

 (prinl "The multiplexer did not reply")

 (if (not (= (i2c-write id mux-left) mux-

left))

 (prinl "The mux did not ack the write")))

(i2c-stop id)

Listing 3: Send a byte to the I2C multiplexer

VII. CONCLUSION

The problems of the non-portability of source code and

application code in various Scheme implementations

mentioned in the introduction section are solved by using

Pico Lisp. Using Pico Lisp as a virtual machine on the

microcontroller proves to be a very handy tool for doing rapid

application development. It permits easy incremental

programming on the REPL. Complex programs involving a

database or decision trees can be written in just a handful of

lines of code. For more information, see tic-tac-toe [11]

running on a microcontroller. The code base is developed as

free and open source software. It is hosted on Github [12].

VIII. REFERENCES

[1] John McCarthy. “Recursive functions of symbolic expressions and
their computation by machine, part-1”, MIT Cambridge, 1960.

[2] Lorenzo Mancini. “Nintendo DS/Stackless Python

2.5” http://disinterest.org/NDS/Python25.html

[3] Vincent St-Amour, Marc Feeley. “PICOBIT: A compact Scheme
system for microcontrollers”. ni ersit e de Montreal

[4] Fischell Department of Bioengineering. “ARMPIT Scheme – A
Scheme interpreter on a microcontroller”

http://armpit.sourceforge.net/

[5] Alexander Burger. “Pico Lisp: A radical approach to application
development”, June 2006.

[6] Corinna Vinschen, Jeff Johnston. “Newlib C

library” http://sourceware.org/newlib/

[7] Elm Chan. “FatFs FAT file system

module”

http://elm-chan.org/fsw/ff/00index_e.html

[8] The SCons foundation.

http://www.scons.org/

[9] Christopher Cole, (modified by Raman Gopalan). “iv - a vi clone for
microcontrollers”

https://github.com/simplemachines-italy/Alcor6L/blob/master/src/iv/iv.c

[10] Raman Gopalan. “Internal transient symbols for PIO”.

https://github.com/simplemachines-
italy/Alcor6L/blob/master/src/picolisp/src/tab.c

[11] Alexander Burger. “tic-tac-toe”

https://github.com/simplemachines-italy/examples/blob/master/tic-
tac-toe/ttt.l

[12] SimpleMachines. “Alcor6L”

https://github.com/simplemachines-italy/Alcor6L

http://disinterest.org/NDS/Python25.html
http://sourceware.org/newlib/
http://elm-chan.org/fsw/ff/00index_e.html
https://github.com/simplemachines-italy/Alcor6L/blob/master/src/iv/iv.c
https://github.com/simplemachines-
https://github.com/simplemachines-italy/examples/blob/master/tic-tac-toe/ttt.l
https://github.com/simplemachines-italy/examples/blob/master/tic-tac-toe/ttt.l
https://github.com/simplemachines-italy/Alcor6L

