
This chapter contains information on building a GNU toolchain for
ARM targets.

The GNU Toolchain for ARM
targets HOWTO

Wookey

Chris Rutter

Jeff Sutherland

Paul Webb

This document contains information on setting up a GNU toolchain for ARM targets. It
details both some pre-compiled toolchains which you can install, and how to compile
your own toolchain, as either a native or a cross-compiler.

1. Credits
This document is based on the work of Chris Rutter (now, sadly, deceased) who’s
’Building the GNU toolchain for ARM targets’ document was gospel for some time. It
eventually became out of date so Wookey (<wookey@armlinux.org >) updated it and
gave it a substantion rewrite, adding the pre-built toolchain info at the same time. Paul
Webb (<paul.webb@argonet.co.uk >) did the initial conversion to DocBook, Phil

1

The GNU Toolchain for ARM targets HOWTO

Blundell (<philb@gnu.org >) provided info on the current state of the art and
comments on the draft. Jeff Sutherland (<jeffs@accelent.com >) then fixed the bits
that were still wrong, and now maintains the doc, along with Wookey. Thanx to all.

As well as being on-line as a stand-alone HOWTO, this document is also available as a
chapter of the book: A ’Guide to ARMLinux for Developers’
(http://www.aleph1.co.uk/armlinux/thebook.html)

2

This chapter contains information on building a GNU toolchain for ARM targets.

1. Toolchain overview
The toolchain actually consists of a number of components. The main one is the
compiler itself gcc, which can be native to the host or a cross-compiler. This is
supported bybinutils, a set of tools for manipulating binaries. These components are all
you need for compiling the kernel, but almost anything else you compile also needs the
C-library glibc. As you will realise if you think about it for a moment, compiling the
compiler poses a bootstrapping problem, which is the main reason why generating a
toolset is not a simple exercise.

This chapter contains information on how the toolchain fits together and how to build
it. However, for most developers it is not necessary to actually do this. Building the
toolchain is not a trivial exercise and for most common situations pre-built toolchains
already exist. Unless you need to build your own because you have an unusual situation
not catered for by the pre-built ones, or you want to do it anyway to gain a deeper
understanding, then we strongly recommend simply installing and using a suitable
ready-made toolchain.

2. Pre-built Toolchains

This CD contains three pre-built toolchains, one from emdebian.org, one from the
LART project and a third from compaq’s handhelds.org team. The emdebian chain is
newest, and we’ve had good sucess with it, but all are used by various people. They all
have very similar functionality.

At the moment the most likely situation where a pre-built toolchain will not do the job
is if you need Thumb support, in which case you need to use gcc v3 (not yet released at
the time of writing, but available as snapshots).

3

2.1. Native Pre-built Compilers
For binary versions of native compilers (ie ones that run on ARM and compile for
ARM), the current stable release is on the Aleph ARMLinux CD. You can also get
them from:

2.1.1. Resources

• The current stable release on Debian’s master FTP site (armv3l and above)
(ftp://ftp.debian.org/debian/dists/stable/main/binary-arm/devel/).

• The latest release on Debian’s master FTP site (armv3l and above)
(ftp://ftp.debian.org/debian/dists/unstable/main/binary-arm/devel/).

Sometimes ARMLinux.org will have experimental versions available.

2.2. Emdebian
The emdebian version includes gcc version 2.95.2, binutils 2.9.5.0.37, and glibc 2.1.3.
Installation is simple. If you have a Debian system then the emdebian cross-compiler is
incredibly simple to install - just show apt the directory on the CD and doapt-get
install task-cross-arm. What could be simpler?

Warning
The emdebian cross development environment will install files in
/usr/bin so you will have to make sure that you do not overwrite
any development tools which you may already have on your
system.

4

2.2.1. Installing the Toolchain

task-cross-arm is avirtual package which includes:

1. gcc version 2.95.2;

2. binutils 2.9.5.0.37;

3. glibc 2.1.3.

This is made up of the following packages:

1. the C preprocessor: cpp-arm_2.95.2-12e4_i386.deb;

2. the C compiler: gcc-arm_2.95.2-12e4_i386.deb;

3. the C++ compiler: g++-arm_2.95.2-12e4_i386.deb;

4. gnu C library: libc6-dev-arm_2.1.3-8e4_i386.deb;

5. C++ library: libstdc++2.10-arm_2.95.2-12e4_i386.deb;

6. C++ library and headers: libstdc++2.10-dev-arm_2.95.2-12e4_i386.deb;

7. Binary utilities: binutils-arm_2.9.5.0.37-1e3_i386.deb.

They are available in both deb and RPM form.

In order to set up your cross development environment on a Debian system, proceed as
follows:

• su to root by typingsuat the prompt;

• add the line

deb http://www.emdebian.org/emdebian unstable main

to your /etc/apt/sources.list file;

• type apt-get updateto tell apt/dselect to note the new packages available ;

• enterapt-get install task-cross-armto install your new development environment;

• typeexit to become a normal user and begin to cross-compile.

5

For the RPM form download it and use:

rpm -i g++-arm-1%3a2.95..2-12e4.i386.rpm

2.3. LART
The LART tarball contains:

1. gcc 2.95.2;

2. binutils 2.9.5.0.22;

3. glibc 2.1.2.

2.3.1. Installing the Toolchain

In order to install the LART tarball on your system, do the following:

mkdir /data
mkdir /data/lart
cd /data/lart
bzip2 -dc arm-linux-cross.tar.bz2 |tar xvf -

You can then add/data/lart/cross/bin to your path. The C and C++ compilers
can then be invoked witharm-linux-gcc andarm-linux-g++ respectively.

2.4. Compaq
The Compaq arm-linux cross toolchain includes:

1. gcc-2.95.2;

2. binutils-2.9.5.0.22;

6

3. glibc-2.1.2 with the international crypt library.

The toolchain is compiled with a i386 host with an armv41 target.

2.4.1. Installing the Toolchain

Note: The toolchain must be installed in /skiff/local as it will not work from
any other path.

The only other problem that you may have with the include files is that the tarball was
set up for Linux 2.2.14. You may consequently need to set up symbolic links:

ln -s /usr/src/linux/include/asm
/skiff/local/arm-linux/include/asm
ln -s /usr/src/linux/include/linux
/skiff/local/arm-linux/include/linux

Alternatively, copy/usr/src/linux/include/asm and
/usr/src/linux/include/linux to /skiff/local/arm-linux/include

before runningmake menuconfigandmake dep. This will verify that your kernel tree
and correct symbolic links are up to date.

Note: This toolchain has glibc symbol versioning. If you are using a NetWinder,
you may have to compile your code with static libraries.

7

3. Building the Toolchain
In outline what you need to do is:

• Decide on the target name;

• Decide where to put the images;

• Work out headers policy;

• Compile binutils first;

• Then compile gcc;

• Produce gLibc last.

3.1. Picking a target name
A native compiler is one that compiles instructions for the same sort of processor as the
one it is running on. A cross-compiler is one that runs on one type of processor, but
compiles instructions for another. For ARM embedded development it is common to
have a compiler that runs on an x86 PC but generates code for the target ARM device.

What type of compiler you build and the sort of output it produces is controlled by the
’target name’. This name is what you put in instead of ’TARGET-NAME’ in many of
the examples in this chapter. Here are the basic types:

arm-linux

This is the most likely target you’ll want. This compiles ELF support for
Linux/ARM(i.e. standard ARMLinux). ELF is the best and most recent form for
binaries to be compiled in, although early Acorn Linux/ARM users may still be
using the old ’a.out’ format.

arm-linuxaout

This produces Linux/ARM flavour, again, but using the ’a.out’ binary format,

8

instead of ELF. This is older, but produces binaries which will run on very old
ARMLinux installations. This is now strongly deprecated; there should be no
reason to use this target; note that binutils 2.9.5 doesn’t contain support for it
(refer to Section 3.6.3).

arm-aout, arm-coff, arm-elf, arm-thumb

These all produceflat, or standalone binaries, not tied to any operating system.
arm-elf selects Cygnus’ ELF support, which shares much of its code with
arm-linux.

You can fiddle with thearmbit of the target name in order to tweak the toolchain you
build by replacing it with any of these:

armv2

This makes support for the ARM v2 architecture, as seen in the older ARM2 and
ARM3 processors. Specifically, this forces the use of 26-bit mode code, as this is
the only type supported in the v2 architecture.

armv3l, armv3b

This makes support for the ARM v3 architecture, as seen in the ARM610, and
ARM710. Thel or b suffix indicates whether little-endian or big-endian support is
desired (this will almost always be little-endian).

armv4l, armv4b

This makes support for the ARM v4 architecture, as used in the StrongARM,
ARM7TDMI, ARM8, ARM9.

armv5l, armv5b

This makes support for the ARM v5 architecture, as used in the XScale and
ARM10.

In practice the target name makes almost no practical difference to the toolchain you
get anyway so you should always use plain ’arm’. This means that the toolchain itself is
not unhelpfully tied to the type of processor it was built on. You get a toolchain that

9

will run on all ARM processors and you can set the compiler output for the target
processor when you build each part of the toolchain.

3.2. Choosing a directory structure
In many of the shell commands listed in this document you’ll see italicised and
emboldened bits of text. These are, on the whole, directory paths which will change
depending on exactly how you’ve configured your toolchain. This means that we have
not used an actual directory path in examples as it could be different from your setup.
You need to substitute the correct value for your setup yourself for any commands that
we have listed in this document.

Here is a list of these items:

PREFIX

This is the base directory containing all the other subdirectories and bits of your
toolchain; the default for the native toolchain on any system is almost always
/usr . To keep from stepping on your system’s native tools when you build a
cross-compiler you should put your cross-development toolchain in/usr/local ,
or /usr/arm/tools or somewhere else that makes sense for you, in order to
keep it separate and easy to maintain.

TARGET-PREFIX

If you’re building a cross-toolchain, this is equal to PREFIX/TARGET-NAME
(e.g./usr/arm-linux). If you’re building a native compiler, this is simply equal
to PREFIX.

KERNEL-SOURCE-LOCATION

This is the place where your kernel source (or at least headers) are stored.
Especially if you are cross compiling this may well be different to the native set of
files. We recommend that you set this to TARGET-PREFIX/linux as a sensible
default.

10

3.3. Binutils
Binutils is a collection of utilities, for doing things with binary files.

3.3.1. Binutils components

addr2line

Translates program addresses into file names and line numbers. Given an address
and an executable, it uses the debugging information in the executable to figure
out which file name and line number are associated with a given address.

ar

The GNUar program creates, modifies, and extracts from archives. An archive is
a single file holding a collection of other files in a structure that makes it possible
to retrieve the original individual files (called members of the archive).

as

GNU as is really a family of assemblers. If you use (or have used) the GNU
assembler on one architecture, you should find a fairly similar environment when
you use it on another architecture. Each version has much in common with the
others, including object file formats, most assembler directives (often called
pseudo-ops) and assembler syntax.

as is primarily intended to assemble the output of the GNU C compiler gcc for use
by the linker ld. Nevertheless, we’ve tried to makeasassemble correctly
everything that the native assembler would. This doesn’t meanasalways uses the
same syntax as another assembler for the same architecture.

c++filt

Thec++filt program does the inverse mapping: it decodes (demangles) low-level
names into user-level names so that the linker can keep these overloaded functions
from clashing.

11

gasp

Gnu Assembler Macro Preprocessor.

ld

The GNU linkerld combines a number of object and archive files, relocates their
data and ties up symbol references. Often the last step in building a new compiled
program to run is a call to ld.

nm

GNU nm lists the symbols from object files.

objcopy

The GNUobjcopy utility copies the contents of an object file to another.objcopy
uses the GNU BFD library to read and write the object files. It can write the
destination object file in a format different from that of the source object file. The
exact behavior ofobjcopy is controlled by command-line options.

objdump

objdump displays information about one or more object files. The options control
what particular information to display.

ranlib

ranlib generates an index to the contents of an archive, and stores it in the archive.
The index lists each symbol defined by a member of an archive that is a relocatable
object file. You may use ‘nm -s’ or ‘nm --print-armap’ to list this index.

readelf

readelf Interprets headers on elf files.

size

The GNUsizeutility lists the section sizes and the total size for each of the object
files objfile in its argument list. By default, one line of output is generated for each

12

object file or each module in an archive.

strings

GNU strings prints the printable character sequences that are at least 4 characters
long (or the number given with the options below) and are followed by an
unprintable character. By default, it only prints the strings from the initialized and
loaded sections of object files; for other types of files, it prints the strings from the
whole file.

strip

GNU strip discards all symbols from the target object file(s). The list of object
files may include archives. At least one object file must be given.strip /modifies
the files named in its argument, rather than writing modified copies under different
names.

3.3.2. Downloading, unpacking and patching

The first thing you need to build is GNU binutils. 2.9.5 versions have proved stable but
generally the latest release is recommended (2.10.1 at the time of writing). No-one
should be using 2.9.1 anymore.

Download the latest version you can find from any of these sites:

• ftp://ftp.gnu.org/gnu/binutils/" - the official release site (US);
(ftp://ftp.gnu.org/gnu/binutils/)

• H. J. Lu’s own site -- this has the very latest stuff (US);
(ftp://ftp.varesearch.com/pub/support/hjl/binutils)

• src.doc.ic.ac.uk (UK).
(ftp://src.doc.ic.ac.uk/Mirrors/sunsite.unc.edu/pub/Linux/GCC)

Unpack the archive somewhere handy, like/usr/src :

cd /usr/src

13

tar -xzf /.../binutils-2.10.1.tar.gz

There may be ARM-specific patches available for binutils which resolve various bugs,
or perhaps improve performance; it’s usually a good idea to apply these to the source, if
they exist. However ARM binutils are now quite stable (at the time of writing) and
integrated with the main tree, so extra patches are no longer normally required. The
best place to get up to date information is the armlinux-toolchain mailing list.

The place to check if there are any currently recommended patches is here:

• ftp://ftp.armlinux.org/pub/toolchain (UK). (ftp://ftp.armlinux.org/pub/toolchain)

3.3.3. Configuring and compiling

Essentially, you want to follow the instructions provided in the file calledINSTALL . In
practice you’ll probably use one of the followingexamples.

If you’re building a native toolchain, i.e. you’re building on an ARM machine for an
ARM machine, then you should just do this from inside the binutils directory:

./configure --prefix=PREFIX

If you’re building on another machine (such as an x86 Linux box), and you want to
build a cross-compiler for the ARM, try this:

./configure --target=TARGET-NAME --prefix=PREFIX e.g../configure
--target=arm-linux --prefix=/usr/arm_tools

This should succeed (i.e. proceed without stopping with anything that looks like an
obvious error message), and you can then actually start the build.

Invokemake in the binutils directory:

make

This should proceed without incident.

If it works, you can then install your new binutils tools, making sure you’ve read the
overwriting warning below (refer to Section 3.6.2):

14

make install

You’ll notice your new set of tools in PREFIX/TARGET-NAME/. One likely location
may be in/usr/arm_tools/arm-linux/ .

Right, we’re done with binutils. Now we move on to the compiler.

3.4. gcc

3.4.1. Kernel headers

Note: When building a native compiler, most likely a set of kernel headers for
your platform will be available and you don’t need to be concerned with headers.
For cross-compiling, a set of kernel headers from a source tree configured for
your target must be available.

The overwhelming chances are that KERNEL-SOURCE-LOCATION for a native
compiler build will be/usr/src/linux . Now skip the rest of this section.

However if you are compiling for a different type of ARM machine, or compiling a
different version of the kernel or cross-compiling, then you need a different set of
headers. First off we need to get hold of a current Linux/ARM kernel. Download the
latest kernel archive you can find (version 2.4.1 at the time of writing):

• ftp.uk.kernel.org (UK) (ftp://ftp.uk.kernel.org/pub/linux/kernel/)

• ftp.kernel.org (US) (ftp://ftp.kernel.org/pub/linux/kernel)

We recommend you use a version 2.4 kernel (i.e. one in the v2.4 directory). There are
several reasons for this; many newer ARM architectures are only really properly
supported in kernel 2.4 and development on version 2.0 has ceased, whilst 2.2 is now in
maintainence mode. However, 2.2 kernels are significantly smaller, so if it has the
functionality you need it may make sense to use one, but you will be running against
the flow to an increasing extent.

15

Unpack this somewhere, although preferably not in/usr/src . If you’re on a Linux
system, the chances are you’ll trash whatever Linux kernel source you already have
installed on your system. We suggest /usr/PREFIX/ (e.g. /usr/arm-linux/).

There are a wide variety of patches you can apply to Linux kernel source for ARM.
Applying the kernel patches tends to be mandatory. The two basic patches we
recommend are:

• the latest patch you can find on ftp.arm.linux.org.uk
(ftp://ftp.arm.linux.org.uk/pub/armlinux/source/kernel-patches) for your version of
the kernel (currentlypatch-2.4.1-rmk1.gz for version 2.4);

• the latest patch you can find in Nicolas Pitre’s StrongARM patches
(ftp://ftp.netwinder.org/users/n/nico/) for your version of the kernel (currently
diff-2.4.1-rmk1-np2.gz for version 2.4).

You may possibly require patches for specific hardware (e.g. iPAQ, Psion), but this is
unlikely for here: we are only trying to get the kernel headers into a state where they
can be used to compile gcc; we don’t have to worry about device driver support and so
forth.

Apply these two patches in sequence (assuming you want to use both of them).

Now you may need to tweak the make file, to ensure that the configure scripts select the
ARM portion of the kernel. Load up the fileMakefile in the top-level kernel source
directory into your favourite text editor, and find the line that looks like this:

ARCH := $(shell uname -m | sed -e s/i.86/i386/ -e

s/sun4u/sparc64/ -e s/arm.*/arm/ -e s/sa110/arm/)

Delete it, or comment it out, and insert this:

ARCH = arm

Now you have to configure the kernel, even though you won’t necessarily want to
compile from it. Fire upmake menuconfigin the top-level kernel source directory:

make menuconfig

16

Go into the top option: ’System and processor type’, and select a system consistent
with the tools you’re building.

For example, if you’re building a set for arm-linux with a StrongARM that doesn’t need
to support arm v3, select ’LART’. In practice, the toolchain only takes a couple of
items from the kernel headers so it doesn’t actually matter much what you select, so
long as you select something and the correct links are made so that the files needed are
visible in the right places.

Exit the configuration program, tell it to save the changes, and then run:

make dep

This command actually makes the links (linking /linux/include/asm/ to
/linux/include/asm-arm etc) and ensures your kernel headers are in tip-top condition for
the toolchain.

Having patched up your kernel appropriately, you are ready to go if you are building a
cross-development tool chain. If you are doing a native toolchain build, however, you
will have to copy the headers across into your new toolchain’s directory:

mkdir TARGET-PREFIX/include

cp -dR KERNEL-SOURCE-LOCATION/include/asm-arm
TARGET-PREFIX/include/asm

cp -dR LINUX-SOURCE-LOCATION/include/linux
TARGET-PREFIX/include/linux

Now gcc will have its headers, and compile happily.

3.4.2. Downloading, unpacking and patching gcc

Download the latest version (2.95.3-prerelease at the time of writing), unless you need
thumb support or are feeling brave, in which case you can try a CVS snapshot of the
forthcoming v3.0 from any of these sites:

• gcc.gnu.org (US) (ftp:///gcc.gnu.org/)

17

• sourceware.cygnus.com Mirror (UK)
(ftp://sunsite.doc.ic.ac.uk/Mirrors/sourceware.cygnus.com/pub/gcc/)

We suggest you grabgcc-core-2.95.3.tar.bz2 (8MB) (in thegcc-2.95.3

directory on the gcc site), or evengcc-2.95.3.tar.bz2 (12MB) if you’re feeling
masochistic and want the whole thing.

Following through the same instructions as above, unpack your downloaded gcc. Then
you may choose to apply patches if they exist; As of gcc 2.95.2 patches for ARM are
not generally required. Check out the armlinux-toolchain list archives for the current
state of play or look here to see if there are any current patches for your version:

• ftp://ftp.armlinux.org/pub/toolchain (UK). (ftp://ftp.armlinux.org/pub/toolchain)

3.4.3. Configuring and compiling

You can now configure gcc in a similar way that you did for binutils (readingINSTALL

as you go).

Most people will have arm-linux as the target name they’re configuring for, which
builds a toolchain suitable for running on any ARM. For a native compiler do this:

./configure --prefix=PREFIX

For a cross-compiler, do this::

./configure --target=TARGET-NAME --prefix=PREFIX
--with-headers=LINUX-SOURCE-LOCATION/include

e.g../configure --target=arm-linux --prefix=/usr
--with-headers=/usr/src/linux/include

Configuring done, now we can build the C compiler portion.

This is probably the trickiest stage to get right; There are several factors to consider:

• Do you have a fully-working and installed version of glibcfor the same ABIas that
for which you are building gcc? (i.e is your existing glibc for the same

18

processor-type and binary format etc). If this is your first time building a
cross-compiler, then the answer is almost certainly no. If this is not your first time
building, and you built glibc previously, in the same format as you’re using for gcc
now, then the answer might be yes.

If the answer is no, then you cannot build support for any language other than C,
because all the other front-ends depend on libc (i.e. the final gcc binary would expect
to link with libc), so if this is your first build, or you changed to a different target,
then you must add the switches--enable-languages=c --disable-threadsto the gcc
configurations listed above.

• Do you even have the libc headers for your target? If this is the very first time you
have built a cross-compiler on your host, then the chances are that the answer is no.
However, if you have previously successfully completed a compilation of a
cross-compiling gcc, and installed it in a location that can be found this time round,
the answer is probably yes.

If the answer is no, you will probably need to employ the "Dinhibit_libc" hack (refer
to Section 3.6.4); however, it’s worth attempting a build first to see whether you’re
affected or not. (Most likely you will be if this is your first cross-compile attempt.)

Invoke make inside the top-level gcc directory, with your chosen parameters. The most
common error looks like this:

./libgcc2.c:41: stdlib.h: No such file or directory

./libgcc2.c:42: unistd.h: No such file or directory
make[3]: *** [libgcc2.a] Error 1

and is common with first time building of cross-compilers (see above). You can fix it,
this time, using the -Dinhibit_libc hack (refer to Section 3.6.4) -- follow through the
instructions in the hack, and then restart at the configure stage.

Assuming that worked, you can now install your spiffy new compiler:

make install

19

If the make terminated normally, congratulations. You (probably) have a compilation
environment capable of compiling kernel-mode software, such as the Linux kernel
itself. Note that when building a cross-compiler you will probably see error messages
in the transcript saying that the compiler that was built doesn’t work. This is because
the test that’s performed creates a small executable in the target, not the host format,
and as a result will fail to run and generate the error. If you’re only after
cross-compiling kernels, feel free to stop here. If you want the ability to compile
user-space binaries, press on.

3.5. glibc
glibc is the C library. Almost all userland applications will link to this library. Only
things like the kernel, bootloaders and other things that avoid using any C library
functions can be compiled without it. There are alternatives to glibc for small and
embedded systems (it’s a big library) but this is the standard and it’s what you should
use for compiling the rest of gcc.

3.5.1. Downloading and unpacking

glibc is split into bits (called add-ons):

• the linuxthreadscode which is in a separate archive;

• the crypto stuff (which used to be an add-on) is now included in the latest release
(glibc-2.2.2).

Fetch the main glibc archive (currentlyglibc-2.2.2.tar.gz) and the corresponding
linuxthreads archive from one of the following:

• ftp.gnu.org/gnu/glibc (US) (ftp://ftp.gnu.org/gnu/glibc);

• ftp.funet.fi (Finland) (ftp://ftp.funet.fi/pub/gnu/funet);

20

Unpack the main glibc archive somewhere handy like/usr/src . Then unpack the two
add-on archives inside the directory created when you unpacked the main glibc archive.
All set.

3.5.2. Configuring and compiling

This is slightly more complicated than the previous section. The most important point
is that before doing any configuring or compiling, you must set the C compiler that
you’re using to be your cross-compiler, otherwise glibc will compile as a horrible mix
of ARM code and native code. This is specified by the CC system variable. Do this in
the same shell you’re going to compile in:

CC=TARGET-NAME-gcc

Be sure to add the path toTARGET-NAME-gcc to your PATH environment variable
as well. Create a new directory next to the top level source directory for gcc. Go into
this directory, and configure and build glibc here. It is a very bad idea to configure in
the glibc source directory (see the README file for further warnings). We won’t detail
the reasons here. Now we can configure glibc. Go into the top-level glibc directory, and
you’ll probably want to run configure more or less like this:

../glibc-2.2.2/configure arm-TARGET-NAME --build=NATIVE-TARGET
--prefix=TARGET-PREFIX --enable-add-ons

So what do all the variables mean? arm-TARGET-NAME is important: at present the
glibc configuration scripts don’t recognise the various mutations of thearm-bit of the
target name. So here you have to specify your normal target name, but changing the
first arm- bit back to simply arm, rather than, say, armv3l.

NATIVE-TARGET is the target name of the machine you’re building on; for instance
on an x86 Linux machine, i586-linux would probably do nicely.

You’ll notice the prefix is different this time: not just PREFIX, but with the target name
component on the end as well.

21

Warning
Don’t forget to specify this last component, or you may hose your
local libraries, and thus screw up your system.

Okay, go ahead and configure, readingINSTALL if you want to check out all the
options. Assuming that worked, just run:

make
make install

And if thoseworked, you’re sorted. You have a full ARM toolchain and library kit
available for use on your system - however it can only compile C programs. To be able
to compile anything else, you need to do a bit more work.

Go back and re-configure gcc but this time either add the languages you want (e.g.
--enable-languages=c,c++or else leave off the switch altogether to build everything.
You must also remove the "Dinhibit_libc" hack if you had to apply it before.
WARNING: be sure to unset the ’CC’ environment variable when cross-compiling so
the native compiler will be used to finish building your cross-development tool chain.

You can now try compiling things by using TARGET-NAME-gcc (e.g arm-linux-gcc)
as your compiler; just set CC as above (e.g CC=arm-linux-gcc) before compiling any
given package, and it should work. For any package using configure, you can normally
set CC in the makefile, rather than as a local system variable. Setting the local system
variable can be a problem if later on you need to compile something natively and you
forget to unset it. Be sure that a path to all of the toolchain binaries exists in your PATH
environment variable.

22

3.6. Notes

3.6.1. libgcc

Whatever target name you build gcc for, the main code engine still contains support for
all the different ARM variations (i.e. it’s the same whatever target name you build
with). However, there is a library accompanying gcc, containing some fundamental
support routines, calledlibgcc.a . This is the thing that will differ between different
target names, and this is what makes different toolchains binary incompatible.

Note: Exactly the same incompatibilities apply to glibc as well.

3.6.2. Overwriting an existing toolchain

If you’re building a native compiler, with a significantly different target from the
current one, you must be aware that it is extremely easy to trash your toolchain
half-way through building. The most common cause of this is trying to build a native
set of ELF tools on a system where gcc was built to produce a.out code (e.g. older
Linux/ARM systems running on Acorn hardware). This is no longer a significant issue,
but the example remains valid. The crucial breaking point is themake install command
which installs binutils. In the example scenario, this will leave you unable to link any
programs, as gcc’s libraries will be in a.out format, but all your binutils will be unable
to understand anything but ELF.

So, how does one get round this? A solution is to initially build everything with a
“PREFIX” of something like/usr/local/arm-tmp , so as not to interfere with the
existing toolchain. Then, go back and compile everything again, but using your proper
prefix (e.g./usr), but making sure/usr/local/arm-tmp (or whatever you used) is
on your $PATH environment variable. Then, having built everything in the correct
directory, swipe/usr/local/arm-tmp .

If you do manage to trash your toolchain, you will need to go and fetch a suitable
toolchain for your existing installation.

23

3.6.3. Issues with older version of binutils and gcc

There are some significant differences between binutils 2.9.1 and 2.9.5 and between
gcc 2.95.1 and 2.95.2. If you use an old binutils with a new compiler or vice versa then
things will go wrong. The indications of this areas follows: the error ’unrecognised
emulation: armelf_linux’ means your toolchain is too old for your compiler. Conversely
’unrecognised emulation: elf32arm’ means your compiler is too old for your toolchain.

3.6.4. The -Dinhibit_libc hack

Upon installing a successful build of gcc, some headers will get put in the target’s
includedirectory. However, if you are building a (cross) compiler for the very first
time, or with a different set of paths, it won’t have these headers to hand. For the first
time you build a gcc then, you can follow through these steps to fix the problem:

• Edit gcc/config/arm/t-linux

and add

-Dinhibit_libc and-D__gthr_posix_h

to:

TARGET_LIBGCC2_CFLAGS.

That is, change the line that looks like:

TARGET_LIBGCC2_CFLAGS = -fomit-frame-pointer -fPIC

to:

TARGET_LIBGCC2_CFLAGS = -fomit-frame-pointer -fPIC
-Dinhibit_libc -D__gthr_posix_h .

• Re-run configure, but supplying the extra parameter--disable-threads .

24

4. Links
Other useful sources of information include:

• Phil Blundell’s web site (http://www.tazenda.demon.co.uk/phil/). This web site is a
good place to check for information that isn’t out of date.

• The crossgcc FAQ is an excellent source of information on building cross-compilers,
and should be read.

• Chris Sawer on kernel-compiling hints
(http://members.xoom.com/chrissawer/armlinux.html)

• The main ARMLinux pages (http://www.arm.linux.org.uk/) often have useful
information on them, and are a good starting point.

25

