
Thumb® Instruction Set
Quick Reference Card

Key to Tables
<loreglist> A comma-separated list of Lo registers, enclosed in braces, { and }. <loreglist+LR> A comma-separated list of Lo registers. plus the LR, enclosed in braces, { and }.

<loreglist+PC> A comma-separated list of Lo registers. plus the PC, enclosed in braces, { and }.

All Thumb registers are Lo (R0-R7) except where specified. Hi registers are R8-R15.

Operation § Assembler Updates Action Notes
Move Immediate MOV Rd, #<immed> N Z Rd := immed Immediate range 0-255.

Lo to Lo MOV Rd, Rm N Z * * Rd := Rm * Clears C and V flags.

Hi to Lo, Lo to Hi, Hi to Hi MOV Rd, Rm Rd := Rm Not Lo to Lo. Flags not affected.

Copy Any to Any 6 CPY Rd, Rm Rd := Rm Any register to any register. Flags not affected.

Arithmetic Add ADD Rd, Rn, #<immed> N Z C V Rd := Rn + immed Immediate range 0-7.

Lo and Lo ADD Rd, Rn, Rm N Z C V Rd := Rn + Rm

Hi to Lo, Lo to Hi, Hi to Hi ADD Rd, Rm Rd := Rd + Rm Not Lo to Lo. Flags not affected.

immediate ADD Rd, #<immed> N Z C V Rd := Rd + immed Immediate range 0-255.

with carry ADC Rd, Rm N Z C V Rd := Rd + Rm + C-bit

value to SP ADD SP, #<immed> R13 := R13 + immed Immediate range 0-508 (word-aligned). Flags not affected.

form address from SP ADD Rd, SP, #<immed> Rd := R13 + immed Immediate range 0-1020 (word-aligned). Flags not affected.

form address from PC ADD Rd, PC, #<immed> Rd := (R15 AND 0xFFFFFFFC) + immed Immediate range 0-1020 (word-aligned). Flags not affected.

Subtract SUB Rd, Rn, Rm N Z C V Rd := Rn – Rm

immediate 3 SUB Rd, Rn, #<immed> N Z C V Rd := Rn – immed Immediate range 0-7.

immediate 8 SUB Rd, #<immed> N Z C V Rd := Rd – immed Immediate range 0-255.

with carry SBC Rd, Rm N Z C V Rd := Rd – Rm – NOT C-bit

value from SP SUB SP, #<immed> R13 := R13 – immed Immediate range 0-508 (word-aligned). Flags not affected.

Negate NEG Rd, Rm N Z C V Rd := – Rm

Multiply MUL Rd, Rm N Z * * Rd := Rm * Rd * C and V flags unpredictable in §4T,
unchanged in §5T and above

Compare CMP Rn, Rm N Z C V update CPSR flags on Rn – Rm Can be Lo to Lo, Lo to Hi, Hi to Lo, or Hi to Hi.

negative CMN Rn, Rm N Z C V update CPSR flags on Rn + Rm

immediate CMP Rn, #<immed> N Z C V update CPSR flags on Rn – immed Immediate range 0-255.

No operation NOP None Flags not affected.

Logical AND AND Rd, Rm N Z Rd := Rd AND Rm

Exclusive OR EOR Rd, Rm N Z Rd := Rd EOR Rm

OR ORR Rd, Rm N Z Rd := Rd OR Rm

Bit clear BIC Rd, Rm N Z Rd := Rd AND NOT Rm

Move NOT MVN Rd, Rm N Z Rd := NOT Rm

Test bits TST Rn, Rm N Z update CPSR flags on Rn AND Rm

Shift/rotate Logical shift left LSL Rd, Rm, #<shift> N Z C* Rd := Rm << shift Allowed shifts 0-31. * C flag unaffected if shift is 0.

LSL Rd, Rs N Z C* Rd := Rd << Rs[7:0] * C flag unaffected if Rs[7:0] is 0.

Logical shift right LSR Rd, Rm, #<shift> N Z C Rd := Rm >> shift Allowed shifts 1-32.

LSR Rd, Rs N Z C Rd := Rd >> Rs[7:0] * C flag unaffected if Rs[7:0] is 0.

Arithmetic shift right ASR Rd, Rm, #<shift> N Z C Rd := Rm ASR shift Allowed shifts 1-32.

ASR Rd, Rs N Z C* Rd := Rd ASR Rs[7:0] * C flag unaffected if Rs[7:0] is 0.

Rotate right ROR Rd, Rs N Z C* Rd := Rd ROR Rs[7:0] * C flag unaffected if Rs[7:0] is 0.

Reverse Bytes in word 6 REV Rd, Rm Rd[31:24] := Rm[7:0], Rd[23:16] := Rm[15:8],
Rd[15:8] := Rm[23:16], Rd[7:0] := Rm[31:24]

Bytes in both halfwords 6 REV16 Rd, Rm Rd[15:8] := Rm[7:0], Rd[7:0] := Rm[15:8],
Rd[31:24] := Rm[23:16], Rd[23:16] := Rm[31:24]

Bytes in low halfword,
sign extend

6 REVSH Rd, Rm Rd[15:8] := Rm[7:0], Rd[7:0] := Rm[15:8],
Rd[31:16] := Rm[7] * &FFFF

Thumb Instruction Set
Quick Reference Card

Operation § Assembler Action Notes
Load with immediate offset, word LDR Rd, [Rn, #<immed>] Rd := [Rn + immed] Immediate range 0-124, multiple of 4.

halfword LDRH Rd, [Rn, #<immed>] Rd := ZeroExtend([Rn + immed][15:0]) Clears bits 31:16. Immediate range 0-62, even.

byte LDRB Rd, [Rn, #<immed>] Rd := ZeroExtend([Rn + immed][7:0]) Clears bits 31:8. Immediate range 0-31.

with register offset, word LDR Rd, [Rn, Rm] Rd := [Rn + Rm]

halfword LDRH Rd, [Rn, Rm] Rd := ZeroExtend([Rn + Rm][15:0]) Clears bits 31:16

signed halfword LDRSH Rd, [Rn, Rm] Rd := SignExtend([Rn + Rm][15:0]) Sets bits 31:16 to bit 15

byte LDRB Rd, [Rn, Rm] Rd := ZeroExtend([Rn + Rm][7:0]) Clears bits 31:8

signed byte LDRSB Rd, [Rn, Rm] Rd := SignExtend([Rn + Rm][7:0]) Sets bits 31:8 to bit 7

PC-relative LDR Rd, [PC, #<immed>] Rd := [(R15 AND 0xFFFFFFFC) + immed] Immediate range 0-1020, multiple of 4.

SP-relative LDR Rd, [SP, #<immed>] Rd := [R13 + immed] Immediate range 0-1020, multiple of 4.

Multiple LDMIA Rn!, <reglist> Loads list of registers Always updates base register.

Store with immediate offset, word STR Rd, [Rn, #<immed>] [Rn + immed] := Rd Immediate range 0-124, multiple of 4.

halfword STRH Rd, [Rn, #<immed>] [Rn + immed][15:0] := Rd[15:0] Ignores Rd[31:16]. Immediate range 0-62, even.

byte STRB Rd, [Rn, #<immed>] [Rn + immed][7:0] := Rd[7:0] Ignores Rd[31:8]. Immediate range 0-31.

with register offset, word STR Rd, [Rn, Rm] [Rn + Rm] := Rd

halfword STRH Rd, [Rn, Rm] [Rn + Rm][15:0] := Rd[15:0] Ignores Rd[31:16]

byte STRB Rd, [Rn, Rm] [Rn + Rm][7:0] := Rd[7:0] Ignores Rd[31:8]

SP-relative, word STR Rd, [SP, #<immed>] [R13 + immed] := Rd Immediate range 0-1020, multiple of 4.

Multiple STMIA Rn!, <reglist> Stores list of registers Always updates base register.

Push/
Pop

Push PUSH <loreglist> Push registers onto stack Full descending stack.

Push with link PUSH <loreglist+LR> Push LR and registers onto stack

Pop POP <loreglist> Pop registers from stack

Pop and return 4T POP <loreglist+PC> Pop registers, branch to address loaded to PC

Pop and return with exchange 5T POP <loreglist+PC> Pop, branch, and change to ARM state if address[0] = 0

Branch Conditional branch B{cond} label R15 := label label must be within – 252 to + 258 bytes of current instruction.
See Table Condition Field on reverse.

Unconditional branch B label R15 := label label must be within ±2Kb of current instruction.

Long branch with link BL label R14 := address of next instruction, R15 := label Encoded as two Thumb instructions.
label must be within ±4Mb of current instruction.

Branch and exchange BX Rm R15 := Rm AND 0xFFFFFFFE Change to ARM state if Rm[0] = 0.

Branch with link and exchange 5T BLX label R14 := address of next instruction, R15 := label
Change to ARM

Encoded as two Thumb instructions.
label must be within ±4Mb of current instruction.

Branch with link and exchange 5T BLX Rm R14 := address of next instruction,
R15 := Rm AND 0xFFFFFFFE

Change to ARM state if Rm[0] = 0

Extend Signed extend halfword to word 6 SXTH Rd, Rm Rd[31:0] := SignExtend(Rm[15:0])

Signed extend byte to word 6 SXTB Rd, Rm Rd[31:0] := SignExtend(Rm[7:0])

Unsigned extend halfword to word 6 UXTH Rd, Rm Rd[31:0] := ZeroExtend(Rm[15:0])

Unsigned extend byte to word 6 UXTB Rd, Rm Rd[31:0] := ZeroExtend(Rm[7:0])

Processor
state
change

Software interrupt SWI <immed_8> Software interrupt processor exception 8-bit immediate value encoded in instruction.

Change processor state 6 CPSID <iflags> Disable specified interrups

6 CPSIE <iflags> Enable specified interrups

Set endianness 6 SETEND <endianness> Sets endianness for loads and saves. <endianness> can be BE (Big Endian) or LE (Little Endian).

Breakpoint 5T BKPT <immed_8> Prefetch abort or enter debug state 8-bit immediate value encoded in instruction.

Vector Floating Point Instruction Set
Quick Reference Card

Key to Tables {cond} See Table Condition Field Fd, Fn, Fm Sd, Sn, Sm (single precision), or Dd, Dn, Dm (double precision).

<S/D> S (single precision) or D (double precision). {E} E : raise exception on any NaN. Without E : raise exception only on signaling NaNs.

<S/D/X> As above, or X (unspecified precision). {Z} Round towards zero. Overrides FPSCR rounding mode.

<VFPsysreg> FPSCR, or FPSID. <VFPregs> A comma separated list of consecutive VFP registers, enclosed in braces ({ and }).

Operation Assembler Exceptions Action Notes
Vector arithmetic Multiply FMUL<S/D>{cond} Fd, Fn, Fm IO, OF, UF, IX Fd := Fn * Fm

and negate FNMUL<S/D>{cond} Fd, Fn, Fm IO, OF, UF, IX Fd := – (Fn * Fm)

and accumulate FMAC<S/D>{cond} Fd, Fn, Fm IO, OF, UF, IX Fd := Fd + (Fn * Fm)

negate and accumulate FNMAC<S/D>{cond} Fd, Fn, Fm IO, OF, UF, IX Fd := Fd – (Fn * Fm) Exceptions
and subtract FMSC<S/D>{cond} Fd, Fn, Fm IO, OF, UF, IX Fd := – Fd + (Fn * Fm) IO Invalid operation

negate and subtract FNMSC<S/D>{cond} Fd, Fn, Fm IO, OF, UF, IX Fd := – Fd – (Fn * Fm) OF Overflow

Add FADD<S/D>{cond} Fd, Fn, Fm IO, OF, IX Fd := Fn + Fm UF Underflow

Subtract FSUB<S/D>{cond} Fd, Fn, Fm IO, OF, IX Fd := Fn – Fm IX Inexact result

Divide FDIV<S/D>{cond} Fd, Fn, Fm IO, DZ, OF, UF, IX Fd := Fn / Fm DZ Division by zero

Copy FCPY<S/D>{cond} Fd, Fm Fd := Fm

Absolute FABS<S/D>{cond} Fd, Fm Fd := abs(Fm)

Negative FNEG<S/D>{cond} Fd, Fm Fd := – Fm

Square root FSQRT<S/D>{cond} Fd, Fm IO, IX Fd := sqrt(Fm)

Scalar compare Two values FCMP{E}<S/D>{cond} Fd, Fm IO Set FPSCR flags on Fd – Fm Use FMSTAT to transfer flags.

Value with zero FCMP{E}Z<S/D>{cond} Fd IO Set FPSCR flags on Fd – 0 Use FMSTAT to transfer flags.

Scalar convert Single to double FCVTDS{cond} Dd, Sm IO Dd := convertStoD(Sm)

Double to single FCVTSD{cond} Sd, Dm IO, OF, UF, IX Sd := convertDtoS(Dm)

Unsigned integer to float FUITO<S/D>{cond} Fd, Sm IX Fd := convertUItoF(Sm)

Signed integer to float FSITO<S/D>{cond} Fd, Sm IX Fd := convertSItoF(Sm)

Float to unsigned integer FTOUI{Z}<S/D>{cond} Sd, Fm IO, IX Sd := convertFtoUI(Fm)

Float to signed integer FTOSI{Z}<S/D>{cond} Sd, Fm IO, IX Sd := convertFtoSI(Fm)

Save VFP registers FST<S/D>{cond} Fd, [Rn{, #<immed>}] [address] := Fd. Immediate range 0-1020, multiple of 4.

Multiple, unindexed FSTMIA<S/D/X>{cond} Rn, <VFPregs> Saves list of VFP registers, starting at address in Rn.

increment after FSTMIA<S/D/X>{cond} Rn!, <VFPregs> synonym: FSTMEA (empty ascending)

decrement before FSTMDB<S/D/X>{cond} Rn!, <VFPregs> synonym: FSTMFD (full descending)

Load VFP registers FLD<S/D>{cond} Fd, [Rn{, #<immed>}] Fd := [address]. Immediate range 0-1020, multiple of 4.

Multiple, unindexed FLDMIA<S/D/X>{cond} Rn, <VFPregs> Loads list of VFP registers, starting at address in Rn.

increment after FLDMIA<S/D/X>{cond} Rn!, <VFPregs> synonym: FLDMFD (full descending)

decrement before FLDMDB<S/D/X>{cond} Rn!, <VFPregs> synonym: FLDMEA (empty ascending)

Transfer registers ARM to single FMSR{cond} Sn, Rd Sn := Rd

Single to ARM FMRS{cond} Rd, Sn Rd := Sn

Two ARM to two singles FMSRR{cond} {Sn,Sm}, Rd, Rn Sn := Rd, Sm := Rn Architecture VFPv2 only

Two singles to two ARM FMRRS{cond} Rd, Rn, {Sn,Sm} Rd := Sn, Rn := Sm Architecture VFPv2 only

Two ARM to double FMDRR{cond} Dn, Rd, Rn Dn[31:0] := Rd, Dn[63:32] := Rn Architecture VFPv2 only

Double to two ARM FMRRD{cond} Rd, Rn, Dn Rd := Dn[31:0], Rn := Dn[63:32] Architecture VFPv2 only

ARM to lower half of double FMDLR{cond} Dn, Rd Dn[31:0] := Rd Use with FMDHR.

Lower half of double to ARM FMRDL{cond} Rd, Dn Rd := Dn[31:0] Use with FMRDH.

ARM to upper half of double FMDHR{cond} Dn, Rd Dn[63:32] := Rd Use with FMDLR.

Upper half of double to ARM FMRDH{cond} Rd, Dn Rd := Dn[63:32] Use with FMRDL.

ARM to VFP system register FMXR{cond} <VFPsysreg>, Rd VFPsysreg := Rd Stalls ARM until all VFP ops complete.

VFP system register to ARM FMRX{cond} Rd, <VFPsysreg> Rd := VFPsysreg Stalls ARM until all VFP ops complete.

FPSCR flags to CPSR FMSTAT{cond} CPSR flags := FPSCR flags Equivalent to FMRX R15, FPSCR

www.arm.com

umulative exception bits

3 2 1 0

UFC OFC DZC IOC

double precision operands.

tor).

ting bank of registers.
Vector Floating Point Instruction Set
Quick Reference Card

FPSCR format Rounding (Stride – 1)*3 Vector length – 1 Exce

31 30 29 28 24 23 22 21 20 18 17 16 12 1

N Z C V FZ RMODE STRIDE LEN IXE UF

FZ: 1 = flush to zero mode. Rounding: 0 = round to nearest, 1 = towards +∞, 2 = towards –∞, 3 = towards zero.

If Fd is S0-S7 or D0-D3, operation is Scalar (regardless of vector length). If Fd is S8-S31 or D4-D15, and Fm is S0-S7 or D

If Fd is S8-S31 or D4-D15, and Fm is S8-S31 or D4-D15, operation is Vector. S0-S7 (or D0-D3), S8-S15 (D4-D7), S16-S23 (D

Condition Field
Mnemonic Description (Thumb) Description (VF

EQ Equal Equal

NE Not equal Not equal, or unorder

CS / HS Carry Set / Unsigned higher or same Greater than or equal

CC / LO Carry Clear / Unsigned lower Less than

MI Negative Less than

PL Positive or zero Greater than or equal

VS Overflow Unordered (at least o

VC No overflow Not unordered

HI Unsigned higher Greater than, or unor

LS Unsigned lower or same Less than or equal

GE Signed greater than or equal Greater than or equal

LT Signed less than Less than, or unorder

GT Signed greater than Greater than

LE Signed less than or equal Less than or equal, or

AL Do not use in Thumb Always (normally om

Exceptions
IO Invalid operation

OF Overflow

UF Underflow

IX Inexact result

DZ Division by zero

Proprietary Notice
Words and logos marked with ® or ™ are registered trademarks or trademarks owned by ARM Limited.
Other brands and names mentioned herein may be the trademarks of their respective owners.

Neither the whole nor any part of the information contained in, or the product described in, this document
may be adapted or reproduced in any material form except with the prior written permission of the
copyright holder.

The product described in this document is subject to continuous developments and improvements. All
particulars of the product and its use contained in this document are given by ARM in good faith.
However, all warranties implied or expressed, including but not limited to implied warranties of
merchantability, or fitness for purpose, are excluded.

This reference card is intended only to assist the reader in the use of the product. ARM Ltd shall not be
liable for any loss or damage arising from the use of any information in this reference card, or any error
or omission in such information, or any incorrect use of the product.

Document Num
ARM QRC 0001H

Change Log
Issue Date
A June
B Sept
C Nov
D Oct 1
E Oct 2
F Sept
G Jan 2
H Oct 2
ption trap enable bits C

1 10 9 8 4

E OFE DZE IOE IXC

(Vector length * Stride) must not exceed 4 for

0-D3, operation is Mixed (Fm scalar, others vec

8-D11), S24-S31 (D12-D15) each form a circula

P)

ed

, or unordered

, or unordered

ne NaN operand)

dered

ed

 unordered

itted)

ber

By Change
1995 BJH First Release
1996 BJH Second Release
1998 BJH Third Release
999 CKS Fourth Release
000 CKS Fifth Release
2001 CKS Sixth Release
003 CKS Seventh Release
003 CKS Eighth Release

	Updates
	N
	Z
	N
	Z
	*
	*
	6
	N
	Z
	C
	V
	N
	Z
	C
	V
	N
	Z
	C
	V
	N
	Z
	C
	V
	N
	Z
	C
	V
	N
	Z
	C
	V
	N
	Z
	C
	V
	N
	Z
	C
	V
	N
	Z
	C
	V
	N
	Z
	*
	*
	N
	Z
	C
	V
	N
	Z
	C
	V
	N
	Z
	C
	V
	N
	Z
	N
	Z
	N
	Z
	N
	Z
	N
	Z
	N
	Z
	N
	Z
	N
	Z
	N
	Z
	N
	Z
	N
	Z
	N
	Z
	N
	Z
	6
	6
	6
	4T
	5T
	5T
	5T
	6
	6
	6
	6
	6
	6
	6
	5T

	QRC0001H_rvct_v2.1_thumbside2.pdf
	Exceptions
	Rounding
	(Stride – 1)*3
	Vector length – 1
	Exception trap enable bits
	Cumulative exception bits
	31
	30
	29
	28
	24
	23
	22
	21
	20
	18
	17
	16
	12
	11
	10
	9
	8
	4
	3
	2
	1
	0
	N
	Z
	C
	V
	FZ
	RMODE
	STRIDE
	LEN
	IXE
	UFE
	OFE
	DZE
	IOE
	IXC
	UFC
	OFC
	DZC
	IOC
	FZ: 1 = flush to zero mode.
	Rounding: 0 = round to nearest, 1 = towards +•, 2 = towards –•, 3 = towards zero.
	(Vector length * Stride) must not exceed 4 for double precision operands.

	Proprietary Notice
	Document Number
	Change Log

