
Copyright © Cirrus Logic, Inc. 2005
(All Rights Reserved)http://www.cirrus.com

Using the EP93xx's Raster Engine
1. INTRODUCTION AND SCOPE
The purpose of this document is to help a user understand how to connect an LCD module to the EP93xx series of
embedded processors from Cirrus Logic. A wide variety of timings and output settings are available, which allows
connection to many color and black-and-white LCD displays. Some timing modes will also allow connection to an
external video DAC, which can be used to drive any type of display.

This application note is focused on the typical usage of certain example LCD screens. As such, the examples were
designed and tested at typical values to show how the LCD controller can be used. If planning to use the LCD con-
troller outside these typical cases, the user should test and verify the application in the target environment. In ad-
dition, this document is not a replacement for the information in the EP93xx User's Guide and the EP93xx Data
Sheet. It should be used in conjunction with these documents. It is highly recommended that the user read the
EP93xx User Guide chapter titled "Raster Engine With Analog/LCD Integrated Timing and Interface" before using
this Application Note.

Throughout this document, signals will be identified in diagrams and equations by their corresponding EP93xx signal
names, unless otherwise specified.

2. HOW TO DETERMINE IF AN LCD IS COMPATIBLE WITH THE EP93XX
The EP93xx raster engine is very versatile, and will work with a variety of LCD display types. In order to determine
if a display is compatible, follow these steps:

1. Check the appendices at the back of this manual to see if the display is listed as an example. If so, use the
specified register settings for that display. Otherwise, proceed to step 2.

2. Examine the waveforms in Figures 9, 14, and 20. If the desired display timings match any of these diagrams
(or vary only in signal polarity), Section 6, 6.2, or 6.3 will describe how to set up the EP93xx raster timing
registers. If the display does not match any of these, refer to “Other Types of Framed Data Displays” on
page 41 for more information. Note that the signals AC, XECL, and YSCL are not discussed in these dia-
grams, but are described in the “Video Timing” section of the Raster Engine chapter of the EP93xx User’s
Guide.

3. After determining that the synchronization signals can be generated by the EP93xx, the appropriate pixel
output mode should be chosen. “General Description of Pixel Output Modes” on page 9 describes this pro-
cess.

If the timing requirements or the pixel input format of the display are not supported, than the display may still be
supported using GPIO pins to generate the appropriate timings. However, this will consume much more processor
time, but may be a viable option for slower/smaller displays.

The versatility of the EP93xx raster engine attempts to cover the most common types of displays. Even though care
has been taken in the design of this block, please keep in mind that not all LCD panels can be supported.

AUG '05
AN269REV1

AN269

http://www.cirrus.com
http://www.cirrus.com

2 AN269REV1

AN269

3. GENERATION OF THE VIDEO CLOCK, VIDCLK
The internal video clock (VIDCLK), which drives the raster engine and the external pixel clock (SPCLK), is derived
from PLL1, PLL2, or the external clock input. The SPCLK signal clocks data from the EP93xx into the external LCD
or display. The number of pixels per SPCLK may be 1, 2, 4, 8, or 2-2/3.

Conceptually, the external clock (SPCLK) is generated by dividing the VIDCLK by the appropriate clock divider. The
necessary divider depends on the output mode. For 1 pixel-per-SPCLK, there will be 1 VIDCLK-per-SPCLK. For 2
pixels-per-SPCLK, there will be 2 VIDCLKs-per-SPCLK (SPCLK runs at VIDCLK/2). For the case of 4 pixels-per-
SPCLK, there are 4 VIDCLKs-per-SPCLK. Note that 2-2/3 mode is a special case in which there are 3 VIDCLKs for
the first SPCLK, 2 for the second SPCLK, and 3 for the third SPCLK. This pattern then repeats every 8 pixels (and
therefore 8 VIDCLKs).

To derive VIDCLK, the clock source (PLL1, PLL2, or External Clock) is divided by a prescaler and then by a divide-
by-N block, where N ≥ 2. This is shown in the block diagram in Figure 1. The values of PSEL, ESEL, PDIV, and
VDIV are all bit fields of the VidClkDiv register, contained in the system controller. Please refer to the EP93xx User’s
Guide (“System Controller” section) for more information on the VidClkDiv register.

Below is one algorithm for integer math operations (similar to the Linux 2.6 video display driver) for determining the
proper VidClkDiv settings for a desired VIDCLK rate. Essentially, the algorithm examines the frequency of the ex-
ternal clock source, PLL1, and PLL2, and then attempts different combinations of the divider settings to find a setting
that generates the smallest error. The divider settings are a combination of PDIV (pre-divider) and VDIV (divide-by-
N). Since PDIV can be set to 2, 2.5, or 3, the algorithm uses twice that value (and therefore twice the value of the
PLL1, PLL2, etc.). Note that the accuracy of this algorithm may be improved through the use of floating-point math.

÷ 2.5

÷ 2

÷ 3

00

01

10

0

1

PLL1

PSEL

External
Clock 0

1

ESEL

PLL2

Disable

11

PDIV

÷ N
Video Clock

Output
(To Raster

Block)

VDIV
(≥ 2)

Figure 1. Video Clock Generation

http://www.cirrus.com

AN269

AN269REV1 3

/* Desired SPCLK frequency is passed in as "freq" */
int ep93xx_set_video_div(unsigned long freq)
{

/* pdiv, div, psel and esel are the final values of the appropriate bit settings in the
VidClkDiv register. The current "guess" for pdiv and div are j-3 and k, respectively. */
unsigned long pdiv = 0, div = 0, psel = 0, esel = 0, err, f, i, j, k;

/* Algorithm may return -1 if no valid setting can be found */
err = -1;

/* Try the External Clock, PLL1 an d PLL2 */
for (i = 0; i < 3; i++) {

if (i == 0)
/* The External Clock, multiplied by 2 */
f = 14745600 * 2;

else if (i == 1)
/* PLL1 output frequency, multiplied by 2 */
f = ep93xx_get_pll_frequency(1) * 2;

else
/* PLL2 output frequency, multiplied by 2 */
f = ep93xx_get_pll_frequency(2) * 2;

/* Try each setting of PDIV, the pre-divider, and look for a VDIV
 setting that would give us the desired frequency. Note that we are
 using PDIV*2, since we multiplied the frequency by 2 above. */
for (j = 4; j <= 6; j++) {

k = f / (freq * j);
if (k < 2) {

/* VDIV must be at least 2 */
continue;

}

/* Calculate how far off of the desired frequency this setting is,
and then set the values of PDIV and VDIV from j and k.
At this point, the clock source is set, also. */

if (abs(((f / (j * k))) - freq) < err) {
pdiv = j - 3;
div = k;
psel = (i == 2) ? 1 : 0;
esel = (i == 0) ? 0 : 1;
err = (f / (j * k)) - freq;

}
}

}

if (err == -1) {
/* We were unable to determine a setting that is appropriate */
return -1;

}

/* Unlock the registers */
outl(0xaa, SYSCON_SWLOCK);

/* Write the values to the registers */
outl(SYSCON_VIDDIV_VENA | (esel ? SYSCON_VIDDIV_ESEL : 0) |
 (psel ? SYSCON_VIDDIV_PSEL : 0) |
 (pdiv << SYSCON_VIDDIV_PDIV_SHIFT) |
 (div << SYSCON_VIDDIV_VDIV_SHIFT), SYSCON_VIDDIV);

/* Return the actual value of what frequency we set */
return freq + err;

}

http://www.cirrus.com

4 AN269REV1

AN269

4. USING THE HORIZONTAL AND VERTICAL COUNTER FOR TIMING-
SIGNAL GENERATION

Conceptually, all timing synchronization outputs from the EP93xx are driven from a series of down counters followed
by combinational logic. The input clock to these counters is the video clock signal, VIDCLK (see “Generation of the
Video Clock, VIDCLK” on page 2). There are two banks of down counter/comparators - one for horizontal and one
for vertical timing generation. A block diagram of the horizontal and vertical timing generation is shown in Figure 2,
and brief descriptions of each of the corresponding timing registers are found in Table 1.

The video clock (VIDCLK) decrements the horizontal down counter at one count per video clock period. When the
count reaches 0, the counter loads the value contained in the HClkTotal register, and continues counting down. The
HSYNC output is generated by comparing the value of the horizontal down counter with the HSyncStrtStop register.
If the value of the counter is in the active range (HSyncStrtStop.Start > Horizontal Counter > HSyncStrtStop.Stop),
the HSYNC output becomes active. Similarly, the HBlankStrtStop, HActiveStrtStop, and HClkStrtStop values are
compared with the horizontal down counter, and then control the BLANK Output, Pixel Output Enable, and Pixel
Clock Output Enable (once combined with the appropriate signals from the vertical timing block).

REGISTER DESCRIPTION
VLINESTOTAL

Vertical Lines Total
Total number of horizontal lines in a single video frame (Includ-

ing SYNC, BLANK & ACTIVE regions).
VSYNCSTRTSTOP

Vertical Sync Pulse Start/Stop
Vertical counter: Defines when the VCSYNC pulse becomes

active (Start) and goes inactive (Stop)
VACTIVESTRTSTOP

Vertical Active Start/Stop
Vertical counter: Defines when the VACTIVE signal becomes
active (Start) and goes inactive (Stop). This internal signal is
OR’d with HACTIVE to define the active portion of the video

frame (when active pixel data is clocked out).
VBLANKSTRTSTOP

Vertical Blank Start/Stop
Vertical counter: Defines when the VBLANK signal becomes

active (Start) and becomes inactive (Stop) before and after the
active video portion of the video frame. BLANK is the AND of

HBLANK and VBLANK.
VCLKSTRTSTOP

Vertical Clock Start/Stop
Vertical counter: Defines when the VCLKEN Signal goes active
(Start) and becomes inactive (Stop) at the beginning or end of
the video frame. SPCLK is only generated when the VCLKEN

and HCLKEN signals are BOTH active.
HLINESTOTAL

Horizontal Lines Total
Total Number of VIDCLKs in a single horizontal line of video,

including both active and inactive regions.
HSYNCSTRTSTOP

Horizontal Sync Pulse Start/Stop
Horizontal counter: Defines when the HSYNC pulse becomes

active (Start) and goes inactive (Stop).
HACTIVESTRTSTOP

Horizontal Active Start/Stop
Horizontal counter: Defines when the HACTIVE signal

becomes active (Start) and goes inactive (Stop). This signal is
OR’d with VACTIVE to define the active portion of the video

frame (when active pixel data is clocked out).
HBLANKSTRTSTOP

Horizontal Blank Start/Stop
Horizontal counter: Defines when the HBLANK signal

becomes active (Start) and becomes inactive (Stop) before
and after the active video portion of the video frame. BLANK is

the AND of HBLANK and VBLANK.
HCLKSTRTSTOP

Horizontal Clock Start/Stop
Horizontal counter: Defines when the HCLKEN Signal goes

active (Start) and becomes inactive (Stop) at the beginning or
end of the video frame. SPCLK is only generated when the

VCLKEN and HCLKEN signals are BOTH active.
VIDEOATTRIBS

Video Signal Attributes
Synchronization Control, Polarity Selection, Output Enables,

etc.

Table 1. Summary of Synchronization Registers

http://www.cirrus.com

AN269

AN269REV1 5

When the output of the horizontal down counter rolls over, it will decrement the vertical down counter at one count
per horizontal line. When the count reaches 0, the vertical down counter loads the value contained in the VLinesTo-
tal register, and continues counting down. The VCSYNC output is generated by comparing the value of the vertical
down counter with the VSyncStrtStop register. If the value of the counter is in the active range (VSyncStrtStop.Start
> Vertical Counter > VSyncStrtStop.Stop), the VCSYNC output becomes active. Similarly the VBlankStrtStop, VAc-
tiveStrtStop, and VClkStrtStop values are compared with the vertical down counter, and then control the BLANK
Output, Pixel Output Enable, and Pixel Clock Output Enable (once combined with the appropriate signals from the
horizontal timing block).

4.1 Counter Offsets
Due to internal delays inside the raster timing block, various register settings must be offset to align data,
sync, and clock outputs properly at the output of the ep93xx. In the following sections, these delays are add-
ed at the last stage of computing the timings (when setting the actual register values).

These delays are listed in Table 2.

4.1.1 Horizontal and Vertical Offset Example

Given the following:

Screen Width = 16 Pixels

Screen Height = 1 Line

Screen Resolution = 16 bpp, 565.

Total Number of Horizontal Clocks = 20

Two Lines in the vertical direction

The Start of HSync signal,Blank and Vsync signal and start of data coming out must line up.

Registers Offset in SPClocks
HSYNCSTARTSTOP 0
HACTIVESTRTSTOP -1
HACTIVESTRTSTOP (2 2/3 pixel mode) 0
HBLANKSTRTSTOP -1
HCLKSTRTSTOP -6

Table 2. Offsets for Horizontal and Vertical Counters

http://www.cirrus.com

6 AN269REV1

AN269

Figure 2. Offset for HSync, HActive, VSync and HCLK

HSync and Blank must be raised high after the last byte of data is transferred.

Find the register values for HClksTotal, HSyncStart, HSyncStop, HActiveStrt, HActiveStop, HBlankStrt,
HBlankStop, HClkStrt and HClkStop. To create these timings you must perform the following calcula-
tions.

http://www.cirrus.com

AN269

AN269REV1 7

The Calculations for HClksTotal are

HClksTotal = Number of Horizontal Clocks - 1

= 20 -1

= 19

The Calculations for HSyncStart are

HSyncStart = HClksTotal + Offset of Sync

= 19 + 0

= 19

TheCalculations for HSyncStop are

HSyncStop = HClksTotal - Screen Width + Offset of Sync

= 19 - 16 + 0

= 3

TheCalculations for HActiveStrt are

HActiveStrt = HClksTotal + Offset of HActive

= 19 -1

= 18

The Calculations for HActiveStop are

HActiveStop = HClksTotal - Screen Width + Offset of HActive

= 19 - 16 -1

= 2

The Calculations for HBlankStrt are

HBlankStrt = HClksTotal + Offset of HActive

= 19 -1

= 18

The Calculations for HBlankStop are

HBlankStop = HClksTotal - Screen Width + Offset of HActive

= 19 - 16 -1

= 2

http://www.cirrus.com

8 AN269REV1

AN269
The Calculations for HClkStrt are

HClkStrt = HClkstotal - Offset of HClk

= 19 - 6

= 13

The Calculations for HClkStop are

HClkStop = HClksTotal - Screen Width + Offset of HClk

= 19 - 16 - 6

= -3

Since -3 is not in the range of 0 and HClksTotal, add the number of Horizontal Clocks.

= -3 + Number of Horizontal Clocks

= -3 + 20

HClkStop = 17

The values for HSyncStart, HSyncStop, HActiveStrt, HActiveStop, HBlankStrt, HBlankStop, HClkStrt and
HClkStop are shown in Figure 2.

http://www.cirrus.com

AN269

AN269REV1 9

5. GENERAL DESCRIPTION OF PIXEL OUTPUT MODES
Each display type specifies the number of bits (and therefore bits per color) clocked out per SPCLK period. The
EP93xx supports a variety of formats, as specified in the “Output Shift Mode Table” and “Color Mode Definition Ta-
ble” in the PixelMode register (refer to the Raster Engine chapter in the EP93xx User’s Guide for these tables).

Certain restrictions apply to these settings (as certain modes must be used together). These restrictions, along with
the appropriate pins, are located in the table entitled “Output Pixel Transfer Modes” (again refer to the EP93xx Ras-
ter Engine chapter).

To use the “Output Pixel Transfer Modes” table, locate the output mode that corresponds to the display that is being
used. For both monochrome and color displays, the bits with highest significance should be attached to the display.
For example, if the output mode offers bits 7, 6, and 5, but the display only allows a single bit for each color, then
bit 7 should be chosen from each color. For monochrome displays, consecutive pixels should be chosen from the
same color. This will ensure that the grayscale look-up tables function as expected, as each LUT performs opera-
tions on a single color.

Some of the more common output modes are listed in the following diagrams, detailing where the pixel outputs end
up on the display and which corresponding pins are used for each color. These diagrams are most helpful when
viewed in color. A brief description of the mode follows each diagram. The input to these diagrams would be the
most-significant bits from the color and/or grayscale LUTs and the pixel MUX. Again, for monochrome displays, a
single color output (Red, Green, or Blue) should be used to ensure proper output.

Note that these diagrams are only a graphical representation of the information from the “Output Pixel Transfer
Modes” table in the Raster Engine chapter in the EP93xx User’s Guide. Unused or redundant output pins are those
specified with gray text and a black background.

http://www.cirrus.com

10 AN269REV1

AN269

The output mode “Single 16-bit 565 Pixel Per Clock” is shown in Figure 3. In this mode, each SPCLK will clock out
a single pixel, with 5 bits representing the Blue component on P[5:1], the Red component on P[17:13], and 6 bits
representing the Green component on P[11:6].

0
1
2
3
4
5
6
7
8
9

1 0
1 1
1 2
1 3
1 4
1 5
1 6
1 7

0

0

0

1

1

1

P ix e l D a ta B u s
P in s P [1 7 :0]

P ix e l 0 (F ir s t S P C L K)
P ix e l 1 (S e c o n d S P C L K)P

ixel D
ata M

o
st S

ig
n

ifican
t B

its

(fro
m

 L
U

T
 an

d
 B

lin
k L

o
g

ic)
Figure 3. Single 16-bit 565 Pixel Per Clock Output

http://www.cirrus.com

AN269

AN269REV1 11

The output mode “Single 16-bit 555 Pixel Per Clock” is shown in Figure 4. In this mode, each SPCLK will clock out
a single pixel, with 5 bits representing the Blue component on P[5:1], Green component on P[11:7], and Red com-
ponent of the pixel on P[17:13].

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

0

0

0

1

1

1

Pixel Data Bus
Pins P[17:0]

Pixel 0 (First SPCLK)
Pixel 1 (Second SPCLK)

P
ixel D

ata M
o

st S
ig

n
ifican

t B
its

(fro
m

 L
U

T
 an

d
 B

lin
k L

o
g

ic)

Figure 4. Single 16-bit 555 Pixel Per Clock Output

http://www.cirrus.com

12 AN269REV1

AN269

The output mode “2-2/3 Pixels Per Clock” is shown in Figures 5, 6, and 7. Since this mode is rather complex, one
diagram shows data during each of the first, second, and third SPCLK outputs. In this mode, each SPCLK will clock
out 2-2/3 pixels, with 1 bit representing the Red, Green, and Blue components of the pixel.

In the first SPCLK, pixel 0’s Red, Green, and Blue components are clocked out of P[2:0]. Pixel 1’s Red, Green, and
Blue components are clocked out of P[5:3]. Note that ONLY the Blue and Green component of Pixel 2 are clocked
out of P[7:6]. The Red component of pixel 2 will be clocked out during the second SPCLK.

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

0
0
0
1
1
1
2
2

Pixel Data Bus
Pins P[17:0]

Pixels 0, 1, and 2 (First SPCLK)

Pixel D
ata M

ost Significant B
its

(from
 LU

T and B
link Logic)

Figure 5. 3 Bit Per Pixel Formatted as 2-2/3 Bits, First SPCLK

http://www.cirrus.com

AN269

AN269REV1 13

In the second SPCLK for 2-2/3 mode, pixel 2’s Red component will be clocked out of P[0]. All of the Red, Green,
and Blue components of pixel 3 are clocked out of P[3:1]. Pixel 4’s Red, Green, and Blue components are clocked
out of P[6:4]. Note that ONLY the Blue component of Pixel 5 is clocked out of P[7]. The Green and Red components
of pixel 5 will be clocked out during the third SPCLK.

0
1
2
3
4
5
6
7
8
9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

2
3
3
3
4
4
4
5

Pixel Data Bus
Pins P[17:0]

Pixels 2, 3, 4 and 5 (Second SPCLK)

P
ixel D

ata M
o

st S
ig

n
ifican

t B
its

(fro
m

 L
U

T
 an

d
 B

lin
k L

o
g

ic)

Figure 6. 3-Bit Per Pixel Formatted as 2 2/3 Bits, Second SPCLK

http://www.cirrus.com

14 AN269REV1

AN269

In the third SPCLK for 2 2/3 mode, pixel 5’s Green and Red components will be clocked out of P[1:0]. All of the Red,
Green, and Blue components of pixel 6 are clocked out of P[4:2]. Pixel 7’s Red, Green, and Blue components are
clocked out of P[7:5]. On successive SPCLK periods, the pattern of pixels will repeat.

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

5
5
6
6
6
7
7
7

Pixel Data Bus
Pins P[17:0]

Pixels 5, 6 and 7 (Third SPCLK)

Pixel D
ata M

ost Significant B
its

(from
 LU

T and B
link Logic)

Figure 7. 3-Bits Per Pixel Formatted as 2-2/3 Bits, Third SPCLK

http://www.cirrus.com

AN269

AN269REV1 15

In “4 Pixels-Per-Shift-Clock mode“, shown in Figure 8, only 1 bit (the MSB) will be available for the Blue and Green
components of the pixel. The Red component will have the two MSBs available. In this mode, there are 4 pixels
clocked during each SPCLK. As can be seen from the diagram, pixel 0 is output on P[3:0], pixel 1 is output on P[7:4],
pixel 2 is output on P[11:8], and pixel 3 is output on P[15:12]. Note that the diagram does not show bit 6 (the second-
most-significant bit) for the Red component connected to the display, as most displays will only be using 1 bit for
each color in this mode.

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15Pixel D

ata M
ost Significant B

its
(from

 LU
T and B

link Logic)

0
0
0

1
1
1

Pixel Data Bus
Pins P[17:0]

Pixels 0, 1, 2 and 3

2
2
2

3
3
3

16
17

0

1

2

3

Figure 8. 4 Pixels Per Shift Clock

http://www.cirrus.com

16 AN269REV1

AN269

6. SETTING UP DISPLAY TIMING

6.1 HSYNC/VSYNC-Style Displays
In displays using a HSYNC/VSYNC-style timing interface, the following control signals are commonly used
for data synchronization:

– DCLK - Data Input Clock. Usually one rising/falling edge occurs per pixel or set of pixel data. This is
the highest frequency interface signal, and transitions occur many times during each horizontal line.

– DE - Data Enable or Valid. Used to indicate valid data is currently being clocked into the display.
This may be referred to as a blanking signal, and will become active one time per valid line.

– VSYNC - Vertical Synchronization Signal. Indicates the beginning of a full frame of data. This signal
becomes active one time during one frame if in progressive mode, or two times per frame in
interlaced mode.

– HSYNC - Horizontal Synchronization Signal. Indicates the beginning of the next horizontal line. This
signal becomes active one time during the line, and many times per frame.

These signals should be connected to the EP93xx with the signal mapping shown in Table 3. Note that level
buffers may be required to meet the electrical specifications of the display.

An example set of timings for an HSYNC/VSYNC-style display is shown in Figure 9. The signal names used
are those of the corresponding EP93xx pins.

Display Pin EP93xx Pin

DCLK SPCLK

DE BLANK

VSYNC VCSYNC

HSYNC HSYNC

Table 3. HSYNC/VSYNC Pin Mapping

http://www.cirrus.com

AN269

AN269REV1 17

HSYNC

SPCLK

BLANK

tVSYNC

tHACTIVE

VCSYNC

tHSYNC

tDCLK

Single Horizontal Line

DATA

HSYNC

Single Video Frame

tVACTIVE

BLANK

Back Porch Interval tHBACKPORCH

Back Porch Interval tVBACKPORCH

Front Porch Interval tHFRONTPORCH

Front Porch Interval tVFRONTPORCH

Active Video

Active Video

Figure 9. Example Timings for an HSYNC/VSYNC-Style Display

http://www.cirrus.com

18 AN269REV1

AN269
6.1.1 Pixel Data Clock Rate and HClkTotal/VLinesTotal

The pixel clock rate VIDCLK can be determined from the total number of VIDCLK periods per line, total
number of horizontal lines, and the Refresh Rate.

The timing specifications for this type of display interface will usually list an HSYNC Width, Horizontal
Back Porch Width, Horizontal Front Porch Width, Horizontal Valid, Horizontal Blank length, VCSYNC
Width, VCSYNC frequency, Vertical Back Porch Width, Vertical Front Porch Width, Vertical Valid, and
Vertical Blank lengths.

A typical horizontal line for this type of display can be found in Figure 10. This line can be divided into
regions, which are in units of VIDCLK. The total number of VIDCLK periods per line is the sum of the Hor-
izontal Valid (tHACTIVE) region, the Horizontal Front Porch region (tHFRONTPORCH), the HSYNC re-
gion (tHSYNC), and the Horizontal Back Porch region (tHBACKPORCH). The equation for this is shown
here, where tHORIZ represents the number of VIDCLK periods per horizontal line (all values are in VID-
CLK periods):

tHORIZ = tHACTIVE + tHFRONTPORCH + tHSYNC + tHBACKPORCH

Note that there may be 1, 2, 4, 8, or 2-2/3 pixels per SPCLK. This will mean that tHACTIVE is not neces-
sarily the number of horizontal pixels on the screen. Consult the datasheet of the display to determine the
number of pixels per SPCLK per horizontal line. “Generation of the Video Clock, VIDCLK” on page 2 has
examples of the number of pixels per SPCLK (VIDCLKs/pixel is usually 1).

A typical full video frame for this type of display can be found in Figure 12. The time spent on a single
frame is the sum of the Vertical Valid (tVACTIVE) region, the Vertical Front Porch Width (tVFRONT-
PORCH), the VCSYNC Width (tVSYNC), and the Vertical Back Porch Width (tVBACKPORCH). The
equation for this is shown here, where tVERT represents the amount of time spent per single video frame
(all time is in horizontal line periods):

tVERT = tVACTIVE + tVFRONTPORCH + tVSYNC + tVBACKPORCH

Next, the specification for the refresh rate should be determined from the datasheet. This may be speci-
fied as VCSYNC or VSYNC frequency. We will call this value fVSYNC.

Now the VIDCLK rate can be determined as a product of the above 3 values. This is shown below, where
VIDCLK refers to the VIDCLK rate (Hz):

VIDCLK = tHORIZ * tVERT * fVSYNC

To generate the proper frequency for VIDCLK, either PLL1, PLL2, or an external clock must be used. Any
of these sources may be divided down using the settings in the VidClkDiv (Video Clock Divider) register.
A simple block diagram of this divide structure and a method for determining the proper settings of
VidClkDiv can be found in “Generation of the Video Clock, VIDCLK” on page 2.

Once the VIDCLK rate has been determined, the horizontal and vertical alignment signals can be derived.

http://www.cirrus.com

AN269

AN269REV1 19

6.1.2 Horizontal Alignment Signals

Timings for a single horizontal line can be seen in Figure 10. To determine when these signals become
active, the horizontal frame timing registers HClkTotal, HSyncStrtStop, HActiveStrtStop, HBlankStrtStop
and HClkStrtStop must be set.

“Using the Horizontal and Vertical Counter for Timing-Signal Generation” on page 4 for a description of
the horizontal timing registers.

Recall that the timing specifications for this type of display interface will list an HSYNC Width, Horizontal
Back Porch Width, Horizontal Front Porch Width, Horizontal Valid, and Horizontal Blank lengths.

The HClkTotal register will hold the total length of a single line measured in VIDCLK periods.The equation
for this is shown here:

HClkTotal = tHORIZ – 1

Note that 1 is subtracted for the total as this is a 0-based counter implementation. Also, remember all mea-
surements are assumed to be in periods of VIDCLK. All other signals are determined using this as a time
base.

To determine when the HSYNC, SPCLK (via HCLKEN), and BLANK (via HBLANK) signals should be-
come active during a horizontal line, it is easiest to draw them out as shown in Figure 11. This diagram
shows the line counter along the bottom, starting at HClkTotal and counting down to 0. Each line starts
with the counter set to HClkTotal. It then decrements by 1 for each VIDCLK clock period, regardless of
whether SPCLK is present or not. When the counter reaches 0, it is reset to HClkTotal.

HSYNC

SPCLK

BLANK

tHACTIVE

tHSYNC

tDCLK

Single Horizontal Line

DATA

Back Porch Interval tHBACKPORCH Front Porch Interval tHFRONTPORCH

Active Video

Figure 10. Typical Horizontal Line for HSYNC/VSYNC Display

http://www.cirrus.com

20 AN269REV1

AN269

Next we will determine the appropriate time for the HSYNC signal to become active. As can be seen from
the diagram, it should become active during the tHSYNC region, when the line counter is set to HClkTotal
(the beginning of the horizontal line). HSYNC becomes inactive after a period of time tHSYNC has
elapsed. Therefore, the HSYNC signal should become inactive after the tHSYNC region, when the line
counter is HClkTotal-tHSYNC. This is shown using the equations below, where HSyncStart is the point at
which HSYNC becomes active and HSyncStop is the point at which HSYNC becomes inactive:

HSyncStart = HClkTotal

HSyncStop = HClkTotal – tHSYNC

The active data/blank signal HBLANK becomes inactive when valid data starts, and active once the valid
data stops. In other words, the HBLANK signal should be active for all regions except the active region
(tACTIVE). Therefore, when the horizontal line counter reaches the end of the back porch interval, it
should become inactive. At the beginning of the front porch interval, it should become active again. The
following equations show this, using HBlankStart as the position at which this signal becomes active, and
HBlankStop as the position at which this signal becomes inactive (note that HBlankStop is 1 less than the
front porch, as this is a 0-based counter implementation):

HBlankStart = HClkTotal - tHSYNC - tHBACKPORCH -1

HBlankStop = tHFRONTPORCH - 1

HSYNC

SPCLK

BLANK

tHACTIVE

tHSYNC

tDCLK

Single Horizontal Line

DATA

Back Porch Interval tHBACKPORCH Front Porch Interval tHFRONTPORCH

Count = HClkTotal Count = 0

Horizontal Line
Counter Value

HSyncStart HSyncStop
HSyncStop

HBlankStart
HActiveStart

HBlankStop
HActiveStop

Count = HClkTotal - 1
Count = HClkTotal - 2

Active Video

Figure 11. Horizontal Line for HSYNC/VSYNC Display with Register Timings

http://www.cirrus.com

AN269

AN269REV1 21

The next two values of interest for a horizontal line are the times at which active data should be clocked
out. These values determine when valid data is presented to the display. As can be seen from the dia-
gram, those times are identical to the locations at which the active data/blank signal are changing (the
active region or tACTIVE). The formulas below calculate HActiveStart as the start of active data and HAc-
tiveStop as the end of active data. The offset of minus one comes from Table 2.

HActiveStart = HClkTotal - tHSYNC - tHBACKPORCH - 1

HActiveStop = tHFRONTPORCH - 1

If clock gating is not required, the HClkStart may be set to HCLKSTOTAL and HClkStop can be set to
HClkTotal + 1 . The counter and HCLKSTOP values are never equal so the clock never stops.

HClkStart = HClkTotal

HClkStop = HClkTotal + 1

When clock gating is required, the SPCLK signal is seen at the output when the horizontal pixel counter
is in the active range HClkStart > horizontal pixel counter > HClkStop. The appropriate values should be
identical to the HBlankStart, and HBlankStop values with the offset of minus six.

HClkStart = HClkTotal - tHSYNC - tHBACKPORCH - 6

HClkStop = tHFRONTPORCH - 6

The above values must then be shifted properly and assigned to the HClkTotal, HSyncStrtStop, HActiveS-
trtStop, HBlankStrtStop, and HClkStrtStop registers.

See “Example HSYNC/VSYNC-Style LCD Display - LB/Philips LB064V02-B1” on page 52 for an example
calculation for this type of display

http://www.cirrus.com

22 AN269REV1

AN269
6.1.3 Vertical Alignment Signals

Timings for a single vertical frame can be seen in Figure 12. The timing of the synchronization signals is
determined by the vertical frame timing registers VLinesTotal, VSyncStrtStop, VActiveStrtStop, VBlank-
StrtStop, and VClkStrtStop.

See “Using the Horizontal and Vertical Counter for Timing-Signal Generation” on page 4 for a description
of the vertical timing registers.

Recall from above that the timing specifications for this type of display interface will list a VCSYNC Width,
Vertical Back Porch Width, Vertical Front Porch Width, Vertical Valid, and Vertical Blank lengths.

The VLinesTotal register will hold the total length of a single frame measured in horizontal lines. It is the
sum of the Vertical Valid (tVACTIVE) region, the Vertical Front Porch Width (tVFRONTPORCH), the VC-
SYNC Width (tVSYNC), and the Vertical Back Porch Width (tVBACKPORCH). The equation for this is
shown here (tVERT is calculated in Section 6.1.1):

VLinesTotal = tVERT – 1

Note that 1 is subtracted for the total as this is a 0-based counter implementation. Also, all measurements
are assumed to be in periods of horizontal lines. All other signals are determined using this as a time base.

To determine when the VCSYNC, BLANK, and SPCLK signals should become active during a frame, it
is easiest to draw them out as shown in Figure 13. This diagram shows the line counter along the bottom,
starting at VLinesTotal and counting down to 0. Each frame starts with the counter set to VLinesTotal. It

tVSYNC

VCSYNC

HSYNC

Single Video Frame

tVACTIVE

BLANK

Back Porch Interval tVBACKPORCH Front Porch Interval tVFRONTPORCH

Active Video

Figure 12. HSYNC/VSYNC Video Frame

http://www.cirrus.com

AN269

AN269REV1 23

then counts down by 1 for each HSYNC time period, regardless of whether SPCLK/DATA is present or
not. When the counter reaches 0, it is reset to VLinesTotal.

Next we will determine the appropriate time for the VCSYNC signal to become active. As can be seen
from the diagram, VCSYNC becomes active when the line counter is reset to VLinesTotal (the beginning
of the frame). VCSYNC becomes inactive after the period of tVSYNC has elapsed. Therefore, the VSYNC
signal should become inactive when the line counter is VLinesTotal-tVSYNC. This is shown using the
equations below, where VSyncStart is the point at which VCSYNC becomes active and VSyncStop is the
point at which VCSYNC becomes inactive (again, all time is measured in horizontal line periods):

VSyncStart = VLinesTotal

VSyncStop = VLinesTotal – tVSYNC

The active data/blank signal becomes active when valid data starts, and inactive once the valid data
stops. Therefore, when the vertical line counter reaches the end of the back porch interval, it should be-
come active. At the beginning of the front porch interval, it should become inactive. The following equa-
tions show this, using VBlankStart as the position at which this signal becomes active, and VBlankStop
as the position at which this signal becomes inactive (VBlankStop is 1 less than tVFRONTPORCH due to
0-based counter implementation):

VBlankStart = VLinesTotal - tVSYNC - tVBACKPORCH

VBlankStop = tVFRONTPORCH - 1

tVSYNC

VCSYNC

HSYNC

Single Video Frame

tVACTIVE

BLANK

Back Porch Interval tVBACKPORCH Front Porch Interval tVFRONTPORCH

Vertical Line
Counter Value

Count = VLinesTotal

Count = VLinesTotal - 1

Count = VLinesTotal - 2

Count =0

Active Video

Figure 13. HSYNC/VSYNC Video Frame with Register Timing

http://www.cirrus.com

24 AN269REV1

AN269
The next two values of interest for a frame are the point at which active data should be clocked out. These
values determine when valid data is presented to the display. As can be seen from the diagram, those
times are identical to the locations at which the active data/blank signal are changing. Using VActiveStart
as the start of active data and VActiveStop as the end of active data:

VActiveStart = VBlankStart

VActiveStop = VBlankStop

The last two values that must be determined are the VClkStart and VClkStop values. These determine
when the SPCLK signal is seen at the output during the full video frame. In situations where clock gating
is not required, these may be set such that SPCLK is always running:

VClkStart = VLinesTotal

VClkStop = VLinesTotal

When clock gating is required, the SPCLK signal is seen at the output when the line counter is in the active
range VClkStart > line counter > VClkStop. If the clock should only be present during valid horizontal lines,
the appropriate values should be assigned as such:

VClkStart = VActiveStart

VClkStop = VActiveStop

The above values must then be shifted properly and assigned to the VLinesTotal, VSyncStrtStop, VAc-
tiveStrtStop, VBlankStrtStop, and VClkStrtStop registers.

For an example calculation for this type of display, see “Example HSYNC/VSYNC-Style LCD Display -
LB/Philips LB064V02-B1” on page 52.

6.2 Framed Data Style Displays - Type 1
In displays using a framed data style timing interface, the following control signals are commonly used for
data synchronization:

– CP - Data Input Pixel Clock. Usually one rising/falling edge occurs per pixel or set of pixel data. This
is the highest frequency interface signal, and transitions occur many times during each horizontal
line, once for each horizontal pixel.

– FRM - Vertical Synchronization or Frame Signal. Indicates the beginning of a full frame of data. This
signal becomes active one time during a single video frame.

– LOAD - Horizontal Synchronization or Load Signal. Indicates the beginning of the next horizontal
line. This signal becomes active one time during the line, and many times per full video frame.

These signals should be connected to the EP93xx with the signal mapping shown in Table 4.

http://www.cirrus.com

AN269

AN269REV1 25

A timing diagram for this type of display is shown in Figure 14. Signal and timing names are those of the
corresponding EP93xx pins. A description of the timing requirements is given in Table 5

In this type of display, the total number of SPCLKs per horizontal line is equal to the horizontal resolution.
Also, the total number of SPCLKs per full video frame is the horizontal resolution times the vertical resolu-
tion. Unlike an HSYNC/VSYNC-style display, there are no “extra” HSYNC or SPCLK pulses in the frame.
This will be accomplished by using a gated SPCLK, controlled by the HClkStrtStop register.

Note that in this timing, the VCSYNC signal actually comes after the HSYNC signal. To accomplish this, the
horizontal line counter is aligned such that line transitions occur at the VCSYNC transitions. This will be il-
lustrated in greater detail when the horizontal and vertical timings are determined.

Display Pin EP93xx Pin

CP SPCLK

FRM VCSYNC

LOAD HSYNC

Table 4. Frame Type 1 Pin Mapping

Timing Parameter Description

tHSYNCH HSYNC High pulse duration

tHSYNCSPCLK Time from HSYNC Low to first SPCLK on this line

tSPCLKHSYNC Time from last SPCLK to HSYNC High on next line

tHVCSYNC Time from HSYNC Low to VCSYNC High

tVCHSYNC Time from VCSYNC High to HSYNC Falling Edge

tSPCLKHSYNC Time from the last SPCLK to HSYNC Rising Edge

Table 5. Frame Type 1 Relevant Timing Parameters

http://www.cirrus.com

26 AN269REV1

AN269

HSYNC

SPCLK

tVCSYNC

VCSYNC

tHSYNCH

Single Horizontal Line

DATA

HSYNC

Single Video Frame

SPCLK

One SPCLK per Horizontal Pixel

First Line

VCSYNC
(Horizontal

Line 1 ONLY)

tSPCLK

tHSYNCL

tHSYNCSPCLK

tSPCLKHSYNC

tHVCSYNC

tVCHSYNC

Figure 14. Frame Type 1 Display Timing

http://www.cirrus.com

AN269

AN269REV1 27

6.2.1 VIDCLK and Pixel Data Clock Rate

For Frame Type 1 data displays, the SPCLK will be gated such that clock pulses only occur during valid
data, one pulse per data set. Note that the number of pixels per SPCLK may be 1, 2, 2-2/3, 4, or 8. Also,
the number of VIDCLK periods per SPCLK may not always be constant. For example, in 2 2/3 mode, there
are 3, 2, and then 3 VIDCLKs per SPCLK (thus an average of (3+2+3 VIDCLKs/SPCLK) with (2-2/3 pix-
els/SPCLK) = 1 VIDCLK/pixel).

To determine the VIDCLK rate (and therefore the resulting SPCLK rate), the number of SPCLKs per hor-
izontal line must be estimated. This is done by identifying the different regions of the horizontal line and
assigning a certain number of VIDCLKs to that region. This method is a bit complex due to the fact that
adding VIDCLKs per line will inherently increase the overall VIDCLK (and therefore SPCLK) frequency.
However, a simple iterative process can be used to determine the proper rates.

To simplify the example, we are only going to use the following timing parameters, which will later be used
as regions of time on the horizontal line (the regions will be discussed in depth later in this chapter):

– tHSYNCH - Time for HSYNC high.
– tHVCSYNC - Time from HSYNC low to VCSYNC high.
– tSPCLKHSYNC - Time from last SPCLK until HSYNC high.
– tHSYNCSPCLK - Time from HSYNC low until first SPCLK for this line.
– tACTIVE - The period of the actual active region itself.

The first step is to estimate the VIDCLK rate. This is done with the following formula:

DesiredVidClkFreq = {(VIDCLKs per Pixel * Horizontal Resolution) + [(2 SPCLKs for each region)*(4 re-
gions not including the active region)]} * (Vertical Resolution) * (Desired Refresh Rate)

The quantity of VIDCLKs per Pixel (VIDCLKs per Pixel) depends on the operating mode, but is usually 1.
Note that we have estimated 2 SPCLKs for each region, for each of the 4 regions: HSYNC high, HSYNC
until VCSYNC, VCSYNC until first SPCLK, and last SPCLK until the next line’s HSYNC high.

The next step involves setting up the VIDCLKDIV register, and determining the actual “nearest” value of
VIDCLK frequency. This will not necessarily be the desired VIDCLK frequency, but will be close. An algo-
rithm for this is shown in Section 3. “Generation of the Video Clock, VIDCLK” on page 2. The value re-
turned by setting the VIDCLKDIV register is the actual frequency of VIDCLK (the quantity
ActualVidClkFreq). From the value of ActualVidClkFreq, the VIDCLK period can be determined (the quan-
tity VidClkPeriod):

VidClkPeriod = 1 / ActualVidClkFreq

6.2.2 Horizontal Alignment Signals

To determine the length of time spent on a single horizontal line, the refresh rate is multiplied by the ver-
tical resolution and inverted (1/X), yielding the value LinePeriod:

LinePeriod = 1 / [(refresh rate) * (vertical resolution)]

From that, the number of VIDCLK periods per line (NumVideoClocks) is:

NumVideoClocks = LinePeriod/VidClkPeriod

http://www.cirrus.com

28 AN269REV1

AN269
Note that the number of available video clocks can also be derived by adding up the number of clocks in
each region, but this approach will guarantee a more accurate line frequency.

The value of NumVideoClocks will be the total number of “available” VIDCLK periods for each region of
time in the horizontal line. In order to visualize this quantity, see Figure 15. Note that the NumVideoClocks
quantity represents the total number of VIDCLKs per horizontal line, and therefore will be HClksTotal+1.

Now, the number of VIDCLK periods required for the active region (i.e., region with valid pixel data) can
be determined. In the following equation, ActiveVidClks represents the total number of VIDCLKs that will
occur while outputting pixel data (VIDCLKs per Pixel is usually 1):

ActiveVidClks = (VIDCLKs per Pixel) * (horizontal resolution)

We will now discuss each of the regions in more detail. Each region is labeled by the appropriate length
of time, in VIDCLKs. A diagram of this is shown in Figure 16. The time from the HSYNC signal becoming
active to the time it becomes inactive is LoadHighVidClks. The time from the HSYNC signal becoming
inactive until the VCSYNC signal becomes active (on the first frame) is noted as FrameHoldVidClks. The
time from VCSYNC becoming active until the first valid SPCLK is LoadCPVidClks. The time from the last
SPCLK until the next HSYNC is CPLoadVidClks.

HSYNC

SPCLK

tHSYNCH

Single Horizontal Line

DATA

One SPCLK per Horizontal Pixel

VCSYNC
(Horizontal

Line 1 ONLY)

tSPCLK

tHSYNCL

tHSYNCSPCLK

tSPCLKHSYNC

tHVCSYNC

tVCHSYNC

Count = HClkTotal
Count = 0

Horizontal Line
Counter Value

HSyncStart
HSyncStop

HSyncStop HActiveStart HActiveStop

Count = HClkTotal - 1
Count = HClkTotal - 2

Count = HClkTotal
Count = 0

Figure 15. Horizontal Line for Frame Type 1 Displays

http://www.cirrus.com

AN269

AN269REV1 29

.

HSYNC

SPCLK

tHSYNCH

Single Horizontal Line

DATA

One SPCLK per Horizontal Pixel

VCSYNC
(Horizontal

Line 1 ONLY)

tSPCLK

tHSYNCL

tHSYNCSPCLK

tSPCLKHSYNC

tHVCSYNC

tVCHSYNC

Count = HClkTotal
Count = 0

Horizontal Line
Counter Value

HSyncStart HActiveStart HActiveStop

Count = HClkTotal - 1
Count = HClkTotal - 2

HSyncStop

Lo
ad

H
ig

hV
id

C
lk

s

Fr
am

eH
ol

dV
id

C
lk

s

Lo
ad

C
PV

id
C

lk
s

Ac
tiv

eV
id

C
lk

s

C
PL

oa
dV

id
C

lk
s

Figure 16. Frame Type 1 Display with Colored Regions

http://www.cirrus.com

30 AN269REV1

AN269
Since the remaining region widths are determined by their respective timing parameters, here are some
equations to determine the number of VIDCLK periods required for the display:

LoadHighVidClks = (tHSYNCH / VidClkPeriod) + 1

FrameHoldVidClks = (tHVCSYNC / VidClkPeriod) + 1

LoadCPVidClks = [(tHSYNCSPCLK - tHVCSYNC) / VidClkPeriod] + 1

CPLoadVidClks = (tSPCLKHSYNC / VidClkPeriod) + 1

Note that 1 is added to the result to round up, and tHSYNCH, tHVCSYNC, etc. are in units of seconds.
Once we have these quantities, the number of remaining VIDCLKs per line (those not needed by any re-
gion) is found by subtracting all of the above quantities from the number of available VIDCLKs per hori-
zontal line:

AvailableVidClks = NumVideoClocks - ActiveVidClks - LoadHighVidClks - FrameHoldVidClks -

LoadCPVidClks - CPLoadVidClks

If this quantity is negative, there are not enough VIDCLKs per line, and therefore the VIDCLK frequency
must be increased. To do this, go back to Section 6.2.1 and increase the number of VIDCLKs for any sec-
tion that may require more and recalculate the higher VIDCLK frequency (the number of VIDCLKs may
have to be increased until the actual frequency goes up). As mentioned earlier, this will change the VID-
CLK frequency, and therefore the AvailableVidClks. This process may need to be repeated several times
until a suitable VIDCLK frequency is found.

If the AvailableVidClks is 1 or more, than these clocks can be distributed among the various regions (pad-
ding each region) until all remaining VidClks have been assigned. As each clock is distributed, update the
value of ActiveVidClks, LoadHighVidClks, FrameHoldVidClks, LoadCPVidClks, and CPLoadVidClks.

Now that each region is assigned a certain number of VIDCLK periods, determining the register values
for the EP93xx raster engine is straightforward (note offsets where appropriate due to internal delays in
the raster block):

HClksTotal = NumVideoClocks - 1

HSyncStart = LoadHighVidClks + FrameHoldVidClks - 1

HSyncStop = FrameHoldVidClks - 1

HActiveStart = HClksTotal - LoadCPVidClks -1

HActiveStop = HClksTotal - LoadCPVidClks - ActiveVidClks -1

HClksStart = HClksTotal - LoadCPVidClks - 6

HClksStop = HClksTotal - LoadCPVidClks - ActiveVidClks - 6

Note that the blank output is not used, so 0 can be assigned to the horizontal blank timing registers:

HBlankStart = 0

HBlankStop = 0

http://www.cirrus.com

AN269

AN269REV1 31

6.2.3 Vertical Alignment Signals

The vertical timing alignment signals are easily determined by looking at Figure 17.

The total number of lines is equal to the vertical resolution (notice there are no “blank” lines):

VLinesTotal = (vertical resolution) - 1

The VCSYNC signal becomes active when the vertical line counter is VLinesTotal and becomes inactive
when it is VLinesTotal-1. Therefore:

VSyncStart = VLinesTotal

VSyncStop = VLinesTotal - 1

tVCSYNC

VCSYNC

HSYNC

Single Video Frame

SPCLK

First Line

Vertical Line
Counter Value

Count = VLinesTotal

Count = VLinesTotal - 1

Count = VLinesTotal - 2

Count =0

Count = VLinesTotal

Figure 17. Frame Type 1 Display Vertical Timing

http://www.cirrus.com

32 AN269REV1

AN269
Another result of having no “blank” lines is that the active region covers all of the horizontal lines, so the
active region is the entire vertical width:

VActiveStart = VLinesTotal

VActiveStop = VLinesTotal + 1

VActiveStop is set this way to insure that pixel data is not stopped due to vertical position. Also, the
SPCLK should not be stopped due to vertical position:

VClkStart = VLinesTotal

VClkStop = VLinesTotal + 1

The blank signal is not used, but it may be desired to initialize the Vertical Blanking timing registers to a
known value:

VBlankStart = 0

VBlankStop = 0

6.3 Framed Data Style Displays - Type 2
In displays using a framed data style timing interface, the following control signals are commonly used for
data synchronization:

– CP - Data input pixel clock. Usually one rising/falling edge occurs per pixel or set of pixel data. This
is the highest frequency interface signal, and transitions occur many times during each horizontal
line, once for each horizontal pixel.

– FRM - Vertical Synchronization or Frame Signal. Indicates the beginning of a full frame of data. This
signal becomes active one time during a single video frame.

– LOAD - Horizontal Synchronization or Load Signal. Indicates the beginning of the next horizontal
line. This signal becomes active one time during the line, and many times per full video frame.

These signals should be connected to the EP93xx with the signal mapping shown in Table 6.

Display Pin EP93xx Pin

CP SPCLK

FRM VCSYNC

LOAD HSYNC

Table 6. Frame Type 2 Pin Mapping

http://www.cirrus.com

AN269

AN269REV1 33

A timing diagram for this type of display is shown in Figure 18. Signal and timing names are those of the
corresponding EP93xx pins. A description of the timing requirements is given in Table 7.

In this type of display, the total number of SPCLKs per horizontal line is equal to the horizontal resolution.
Also, and the total number of SPCLKs per full video frame is the horizontal resolution times the vertical res-
olution. Unlike an HSYNC/VSYNC-style display, there are no “extra” HSYNC or SPCLK pulses in the frame.
This will be accomplished by using a gated SPCLK, controlled by the HClkStrtStop register.

Note that in this timing, the VCSYNC signal comes before the HSYNC signal. To accomplish this, the hori-
zontal line counter should be aligned such that the line transition occurs at the VCSYNC transitions. More
on this will be illustrated when the horizontal and vertical timings are determined.

Timing Parameter Description

tHSYNCH HSYNC High pulse duration

tVCHHSYNC Time from VCSYNC High to HSYNC low

tSPCLKHSYNC Time from last SPCLK to HSYNC High on next line

tHSYNCSPCLK Time from HSYNC Low to first SPCLK

tVCLHSYNC Time from VCSYNC Low to HSync Rising Edge

Table 7. Frame Type 2 Relevant Timing Parameters

http://www.cirrus.com

34 AN269REV1

AN269

HSYNC

SPCLK

tVCSYNC

VCSYNC

tHSYNCH

Single Horizontal Line

DATA

HSYNC

Single Video Frame

SPCLK

One SPCLK per Horizontal Pixel

First Line

VCSYNC
(Horizontal

Line 1 ONLY)

tHSYNCSPCLK

tSPCLKHSYNC

tHVCSYNC

tVCHHSYNC

tVCLHSYNC

Figure 18. Frame Type 2 Display Timing

http://www.cirrus.com

AN269

AN269REV1 35

6.3.1 VIDCLK and Pixel Data Clock Rate

For a frame type 2 data display, the SPCLK will be gated such that clock pulses only occur during valid
data, one pulse per data set. Note that the number of pixels per SPCLK may be 1, 2, 2-2/3, 4, or 8. Also,
the number of VIDCLK periods per SPCLK may not always be constant. For example, in 2-2/3 mode,
there are 3, 2, and then 3 VIDCLKs per SPCLK (thus an average of (3+2+3 VIDCLKs/SPCLK) with (2-2/3
pixels/SPCLK) = 1 VIDCLK/pixel).

To determine the VIDCLK rate (and therefore the resulting SPCLK rate), the number of SPCLKs per hor-
izontal line must be estimated. This is done by identifying the different regions of the horizontal line, and
assigning a certain number of VIDCLKs to that region. This method is a bit complex due to the fact that
adding VIDCLKs per line will inherently increase the overall VIDCLK (and therefore SPCLK) frequency.
However, a simple iterative process can be used to determine the proper rates.

To simplify the example, we are only going to use the following timing parameters, which will later be used
as regions of time on the horizontal line (the regions will be discussed in more detail later in this chapter):

– tHSYNCH - HSYNC High pulse duration
– tVCHHSYNC - Time from VCSYNC High to HSYNC low
– tSPCLKHSYNC - Time from last SPCLK to HSYNC High on next line
– tHSYNCSPCLK - Time from HSYNC Low to first SPCLK
– tVCLHSYNC - Time from VCSYNC Low to HSync Rising Edge
– tACTIVE - The period of the actual active region itself.

The first step is to estimate the VIDCLK rate. This is done with the following formula:

DesiredVidClkFreq = {[(VIDCLKs per Pixel) * (Horizontal Resolution)] + [(2 SPCLKs for each region)*(4
regions not including the active region)]} * (Vertical Resolution) * (Desired Refresh Rate)

The quantity of VIDCLKs per Pixel (VIDCLKs per Pixel) depends on the operating mode, but is usually 1.
Note that we have estimated 2 SPCLKs for each region for each of 4 regions: HSYNC high, VCSYNC until
HSYNC, HSYNC low until first SPCLK, and last SPCLK until the next line’s HSYNC high.

The next step involves setting up the VIDCLKDIV register, and determining the actual “nearest” value of
VIDCLK frequency. This will not necessarily be the desired VIDCLK frequency, but will be close. An algo-
rithm for this is shown in Section 3. “Generation of the Video Clock, VIDCLK” on page 2. The value re-
turned by setting the VIDCLKDIV register is the actual frequency of VIDCLK (the quantity
ActualVidClkFreq). From the value of ActualVidClkFreq, the VIDCLK period can be determined (the quan-
tity VidClkPeriod):

VidClkPeriod = 1 / ActualVidClkFreq

http://www.cirrus.com

36 AN269REV1

AN269
6.3.2 Horizontal Alignment Signals

To determine the length of time spent on a single horizontal line, the refresh rate is multiplied by the ver-
tical resolution, and inverted (1/X), yielding the value LinePeriod:

LinePeriod = 1 / [(refresh rate) * (vertical resolution)]

From that, the number of VIDCLK periods per line (NumVideoClocks) is:

NumVideoClocks = LinePeriod per VidClkPeriod

Note that the number of available video clocks can also be derived by adding up the number of clocks in
each region, but this approach will guarantee a more accurate line frequency.

The value of NumVideoClocks will be the total number of “available” clocks for all regions of time in the
horizontal line. In order to visualize this quantity, the see Figure 20. Note that the NumVideoClocks quan-
tity represents the total number of VIDCLKs per horizontal line, and therefore will be HClksTotal+1.

http://www.cirrus.com

AN269

AN269REV1 37

Now, the number of VIDCLK periods required for the active region (i.e., region with valid pixel data) can
be determined. In the following equation, ActiveVidClks represents the total number of VIDCLKs that will
occur while outputting pixel data (there is usually 1 VIDCLK per pixel):

ActiveVidClks = (VIDCLKs/Pixel) * (horizontal resolution)

We will now discuss each of the regions in more detail. Each region is labeled by the appropriate length
of time, in VIDCLKs. A diagram of this is shown in Figure 20. The time from VCSYNC signal becoming
active until the HSYNC signal becomes active (on the second line) is noted as the FrameHoldVidClks.
The time from the HSYNC signal becoming active to the time it becomes inactive is LoadHighVidClks.
The time from HSYNC becoming inactive until the first valid SPCLK is LoadCPVidClks. This will guarantee

HSYNC

SPCLK

tHSYNCH

Single Horizontal Line

DATA

One SPCLK per Horizontal Pixel

VCSYNC
(Horizontal

Line 1 ONLY)

tHSYNCSPCLK

tSPCLKHSYNC

tHVCSYNC

tVCHHSYNC

tVCLHSYNC

Count = HClkTotal

Count = 0

Horizontal Line
Counter Value

HSyncStart

HSyncStop
HSyncStop

HActiveStart HActiveStop

Count = HClkTotal - 1

Count = HClkTotal
Count = 0

Figure 19. Horizontal Line for Frame Type 2 Displays

http://www.cirrus.com

38 AN269REV1

AN269
that the timing is met by making the quantity larger than it needs to be. The time from the last SPCLK until
the VCSYNC signal becomes inactive (on the second line) is CPLoadVidClks.

.

HSYNC

SPCLK

tHSYNCH

Single Horizontal Line

DATA

One SPCLK per Horizontal Pixel

VCSYNC
(Horizontal

Line 2 ONLY)

tHSYNCSPCLK

tSPCLKHSYNC
tVCHHSYNC

tVCLHSYNC

Count = HClkTotal

Count = 0

Horizontal Line
Counter Value

HSyncStart HActiveStart HActiveStop

Count = HClkTotal - 1

Count = HClkTotal
Count = 0HSyncStop

Lo
ad

H
ig

hV
id

C
lk

s

Fr
am

eH
ol

dV
id

C
lk

s

Lo
ad

C
PV

id
C

lk
s

Ac
tiv

eV
id

C
lk

s

C
PL

oa
dV

id
C

lk
s

Figure 20. Frame Type 2 Display with Colored Regions

http://www.cirrus.com

AN269

AN269REV1 39

Since the remaining region widths are determined by their respective timing parameters, here are some
equations to determine the number of VIDCLK periods required for the display:

LoadHighVidClks = (tVCLHSYNC / VidClkPeriod) + 1

FrameHoldVidClks = [(tVCHHSYNC - tVCLHSYNC) / VidClkPeriod] + 1

LoadCPVidClks = (tHSYNCSPCLK / VidClkPeriod) + 1

CPLoadVidClks = [(tSPCLKHSYNC - tVCLHSYNC) / VidClkPeriod] + 1

Note that 1 is added to the result to round up. Once we have these quantities, the number of remaining
VIDCLKs per line (those not needed by any region) is found by subtracting all of the above quantities from
the number of available VIDCLKs per horizontal line:

AvailableVidClks = NumVideoClocks - ActiveVidClks - LoadHighVidClks - FrameHoldVidClks -
LoadCPVidClks - CPLoadVidClks

If this quantity is negative, there are not enough VIDCLKs per line, and therefore the VIDCLK frequency
must be increased. To do this, go back to Section 6.3.1 on page 35 and increase the number of VIDCLKs
for any region that may require more, then recalculate a higher VIDCLK frequency. As mentioned earlier,
this will change the VIDCLK frequency, and therefore the AvailableVidClks. This process may need to be
repeated several times until a suitable VIDCLK frequency is found.

If the AvailableVidClks is 1 or more, then these clocks can be distributed among the various regions (pad-
ding each region) until all remaining VidClks have been assigned. As each clock is distributed, update the
value of ActiveVidClks, LoadHighVidClks, FrameHoldVidClks, LoadCPVidClks, and CPLoadVidClks.

Now that each region is assigned a certain number of VIDCLK periods, determining the register values
for the EP93xx Raster Engine is straightforward (delay offsets included are to compensate for internal de-
lays in the raster engine):

HClksTotal = NumVideoClocks - 1

HSyncStrt = HClksTotal - FrameHoldVidClks

HSyncStop = HClksTotal - FrameHoldVidClks - LoadHighVidClks

HActiveStrt = ActiveVidClks + CPLoadVidClks -1

HActiveStop = CPLoadVidClks - 1

HClkStrt = ActiveVidClks + CPLoadVidClks - 6

HClkStop = CPLoadVidClks - 6

Note that the blank output is not used, so 0 can be assigned to the horizontal blank timing registers:

HBlankStart = 0

HBlankStop = 0

http://www.cirrus.com

40 AN269REV1

AN269
6.3.3 Vertical Alignment Signals

The vertical timing alignment signals are easily determined by looking at Figure 21.

The total number of lines is equal to the vertical resolution (notice there are no “blank” lines):

VLinesTotal = (vertical resolution) - 1

The VCSYNC signal becomes active when the vertical line counter is VLinesTotal - 1 and becomes inac-
tive when it is VLinesTotal - 2. Therefore:

VSyncStart = VLinesTotal - 1

VSyncStop = VLinesTotal - 2

Another result of having no “blank” lines is that the active region covers all of the horizontal lines, so the
active region is the entire vertical width:

VActiveStart = VLinesTotal

VActiveStop = VLinesTotal + 1

tVCSYNC

VCSYNC

HSYNC

Single Video Frame

SPCLK

First Line

Vertical Line
Counter Value

Count = VLinesTotal

Count = VLinesTotal - 1
Count = VLinesTotal - 2

Count =0

Count = VLinesTotal Count = VLinesTotal - 1

Figure 21. Frame Type 2 Display Vertical Timing

http://www.cirrus.com

AN269

AN269REV1 41

Note that VActiveStop is set such that data will never be stopped due to vertical position. Also, the SPCLK
should not be stopped due to vertical position:

VClkStart = VLinesTotal

VClkStop = VLinesTotal + 1

The blank signal is not used, but it may be desired to initialize the Vertical Blanking timing registers to a
known value:

VBlankStart = 0

VBlankStop = 0

6.4 Other Types of Framed Data Displays
The diagrams and techniques from Section 6.2 and 6.3 can easily be adapted to suite a wide variety of dis-
plays that do not fit these timings exactly. To do this, draw out the timing of the horizontal lines, carefully
noting when each synchronization signal changes. Also, note where on the line the video frame pulse (in-
dicating the first line) will make transitions. Then identity the relevant regions of time between the various
sync signals and the active region. Once identified, estimate how many VIDCLKs will be required for each
region (starting with 2 per region is a good estimate), and then calculate the required VIDCLK frequency
and period. From there, distribute the VIDCLKs to each region accordingly, and recheck to ensure that tim-
ing requirements are met. If more VIDCLKs are required for a region on the horizontal line, simply add more
for the required region and repeat the process of recalculation and distribution.

This is the same process that is used in the Frame Type 1 and Type 2 displays seen in Figures 16 and 20.
As can be seen from those figures, change in the synchronization signals, and presence/absence of SPCLK
and data signal a change from one region to the next.

Note that in this process the vertical synchronization signal VCSYNC can only make transitions when the
horizontal line counter rolls over. This will be the point on the horizontal line where the horizontal line counter
changes from 0 to HClksTotal. This will usually determine where the remaining synchronization signals
should be placed within the line.

http://www.cirrus.com

42 AN269REV1

AN269

7. GRAYSCALE LOOK-UP TABLES
Each of the Red, Green, and Blue outputs from either the color look-up table (LUT) or data directly from memory
can be used as indices into the Grayscale LUT. The purpose of the Grayscale LUTs is to provide a means to dither
the output to low-color and monochrome displays based on X- or Y-coordinate (spatial) or frame number (temporal).
In all, 8 shades (2 of which are always full off and full on) are available for each pixel’s Red, Green, and Blue com-
ponents.

Here are some example grayscale LUTs and an example 4-bit-per-pixel color LUT, in reference code form, as well
as a few simple functions and example function calls (in the “C” language) for programming those tables into mem-
ory. These tables support 0%, 25%, 50%, 75%, and 100% output brightness. Note that some entries are repeated,
and could be used for other settings. Since 3 bits of data are taken as input to the grayscale LUTs, up to 8 shades
may be chosen (2 are always used for full on and full off).

7.1 Grayscale Table Example
const unsigned long rgb_gs_lut_r[32] =
{
 // ALL 0 , 25% , 25% , 50% , 50% , 75% , 75% , 100%
 0x00070000,0x00071842,0x00071842,0x00075c53,0x00075c53,0x0007e7bd,0x0007e7bd,0x0007ffff,
 0x00070000,0x00074218,0x00074218,0x0007a3ac,0x0007a3ac,0x0007bde7,0x0007bde7,0x0007ffff,
 0x00070000,0x00078124,0x00078124,0x0007c535,0x0007c535,0x00077edb,0x00077edb,0x0007ffff,
 0x00070000,0x00072481,0x00072481,0x00073aca,0x00073aca,0x0007db7e,0x0007db7e,0x0007ffff
};

const unsigned long rgb_gs_lut_g[32] =
{
 // ALL 0 , 25% , 25% , 50% , 50% , 75% , 75% , 100%
 0x00070000,0x00071842,0x00071842,0x00075c53,0x00075c53,0x0007e7bd,0x0007e7bd,0x0007ffff,
 0x00070000,0x00074218,0x00074218,0x0007a3ac,0x0007a3ac,0x0007bde7,0x0007bde7,0x0007ffff,
 0x00070000,0x00078124,0x00078124,0x0007c535,0x0007c535,0x00077edb,0x00077edb,0x0007ffff,
 0x00070000,0x00072481,0x00072481,0x00073aca,0x00073aca,0x0007db7e,0x0007db7e,0x0007ffff
};

const unsigned long rgb_gs_lut_b[32] =
{
 // ALL 0 , 25% , 25% , 50% , 50% , 75% , 75% , 100%
 0x00070000,0x00071842,0x00071842,0x00075c53,0x00075c53,0x0007e7bd,0x0007e7bd,0x0007ffff,
 0x00070000,0x00074218,0x00074218,0x0007a3ac,0x0007a3ac,0x0007bde7,0x0007bde7,0x0007ffff,
 0x00070000,0x00078124,0x00078124,0x0007c535,0x0007c535,0x00077edb,0x00077edb,0x0007ffff,
 0x00070000,0x00072481,0x00072481,0x00073aca,0x00073aca,0x0007db7e,0x0007db7e,0x0007ffff
};

void RASTER_FillGreyLUT(INT32 data[], int iLUT)
/* Description:
* Fill the Gray scale LUT.
*
*
* Exception Handling (if any):
* none
*
* Garbage Collection (if any):
* none

http://www.cirrus.com

AN269

AN269REV1 43

*
* Global Data:
* |>I | O | IO<|, |>dataname<|
*
** END_FUNC **/
{
 INT32 x;
 unsigned int *GSLUTTable;

 switch (iLUT)
 {
 case 0:
 {
 GSLUTTable = (unsigned int *)0x80030080;
 break;
 }
 case 1:
 {
 GSLUTTable = (unsigned int *)0x80030280;
 break;
 }
 default:
 {
 GSLUTTable = (unsigned int *)0x80030300;
 break;
 }
 }
 for(x = 0;x < 32;x++)
 {
 GSLUTTable[x] = data[x];
 }
}

const long int four_bpp_lut_gs[] = {
 0x00000000, // Black
 0x00202020, // 25% Gray
 0x00606060, // 50% Gray
 0x00a0a0a0, // 75% Gray
 0x00c0c0c0, // White
 0x0060c060, // Light Green
 0x00602020, // Brown
 0x00c060a0, // Pink
 0x00c0c0c0, // White
 0x00c00000, // Red
 0x0000c000, // Green
 0x00c08000, // Orange
 0x00c0c0c0, // White
 0x00c000c0, // Purple
 0x0000c0c0, // Cyan
 0x00c0c0c0};// White

void RASTER_PartialFillLUT(int *data, int number_of_entries,

http://www.cirrus.com

44 AN269REV1

AN269
 int start_position)
/* Description:
* This allows a small range of LUT entries to be replaced.
*
*
* Exception Handling (if any):
* none
*
* Garbage Collection (if any):
* none
*
* Global Data:
* |>I | O | IO<|, |>dataname<|
*
** END_FUNC **/
{
 INT32 x;

 for(x = 0;x < number_of_entries;x++)
 {
 Raster->COLOR_LUT[start_position + x].Value = *(data + x);
 }
}

// These are function calls that will fill the grayscale and color LUTs
// Fill first LUT
RASTER_PartialFillLUT((INT32 *)four_bpp_lut_gs,sizeof(four_bpp_lut_gs)/4,0);
Raster->LUTCONT.Value = 1;
while(Raster->LUTCONT.Field.SSTAT != 1);
//fill 2nd LUT with same data
RASTER_PartialFillLUT((INT32 *)four_bpp_lut_gs,sizeof(four_bpp_lut_gs)/4,0);
RASTER_FillGreyLUT((INT32 *)rgb_gs_lut_r,0);
RASTER_FillGreyLUT((INT32 *)rgb_gs_lut_g,1);
RASTER_FillGreyLUT((INT32 *)rgb_gs_lut_b,2);

http://www.cirrus.com

AN269

AN269REV1 45

Here is the Red grayscale LUT, in the order as would be seen in the EP93xx User’s Guide table “Grayscale
Look-Up Table (GrySclLUT)”. Note that the upper-order bits D[18:16] are set in all registers, but only the
settings in base+0x0 through base+0x1C are used by the grayscale generator to determine if 3- or 4-count
entries are used.

Frame
Ctr

Vert
Ctr

Horz
Ctr

VCNT
(Lines) 11 11 11 11 10 10 10 10 01 01 01 01 00 00 00 00 GrySclLUT

Address *4

HCNT
(Pixels) 11 10 01 00 11 10 01 00 11 10 01 00 11 10 01 00 Frame Pixel

Value

1 1 1 base+0x00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 000

1 1 1 base+0x04 0 0 0 1 1 0 0 0 0 1 0 0 0 0 1 0 00 001

1 1 1 base+0x08 0 0 0 1 1 0 0 0 0 1 0 0 0 0 1 0 00 010

1 1 1 base+0x0C 0 1 0 1 1 1 0 0 0 1 0 1 0 0 1 1 00 011

1 1 1 base+0x10 0 1 0 1 1 1 0 0 0 1 0 1 0 0 1 1 00 100

1 1 1 base+0x14 1 1 1 0 0 1 1 1 1 0 1 1 1 1 0 1 00 101

1 1 1 base+0x18 1 1 1 0 0 1 1 1 1 0 1 1 1 1 0 1 00 110

1 1 1 base+0x1C 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 00 111

1 1 1 base+0x20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 01 000

1 1 1 base+0x24 0 1 0 0 0 0 1 0 0 0 0 1 1 0 0 0 01 001

1 1 1 base+0x28 0 1 0 0 0 0 1 0 0 0 0 1 1 0 0 0 01 010

1 1 1 base+0x2C 1 0 1 0 0 0 1 1 1 0 1 0 1 1 0 0 01 011

1 1 1 base+0x30 1 0 1 0 0 0 1 1 1 0 1 0 1 1 0 0 01 100

1 1 1 base+0x34 1 0 1 1 1 1 0 1 1 1 1 0 0 1 1 1 01 101

1 1 1 base+0x38 1 0 1 1 1 1 0 1 1 1 1 0 0 1 1 1 01 110

1 1 1 base+0x3C 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 01 111

1 1 1 base+0x40 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10 000

1 1 1 base+0x44 1 0 0 0 0 0 0 1 0 0 1 0 0 1 0 0 10 001

1 1 1 base+0x48 1 0 0 0 0 0 0 1 0 0 1 0 0 1 0 0 10 010

1 1 1 base+0x4C 1 1 0 0 0 1 0 1 0 0 1 1 0 1 0 1 10 011

1 1 1 base+0x50 1 1 0 0 0 1 0 1 0 0 1 1 0 1 0 1 10 100

1 1 1 base+0x54 0 1 1 1 1 1 1 0 1 1 0 1 1 0 1 1 10 101

1 1 1 base+0x58 0 1 1 1 1 1 1 0 1 1 0 1 1 0 1 1 10 110

1 1 1 base+0x5C 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 10 111

1 1 1 base+0x60 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 11 000

1 1 1 base+0x64 0 0 1 0 0 1 0 0 1 0 0 0 0 0 0 1 11 001

1 1 1 base+0x68 0 0 1 0 0 1 0 0 1 0 0 0 0 0 0 1 11 010

1 1 1 base+0x6C 0 0 1 1 1 0 1 0 1 1 0 0 1 0 1 0 11 011

1 1 1 base+0x70 0 0 1 1 1 0 1 0 1 1 0 0 1 0 1 0 11 100

1 1 1 base+0x74 1 1 0 1 1 0 1 1 0 1 1 1 1 1 1 0 11 101

1 1 1 base+0x78 1 1 0 1 1 0 1 1 0 1 1 1 1 1 1 0 11 110

1 1 1 base+0x7C 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 11 111

http://www.cirrus.com

46 AN269REV1

AN269
As mentioned in the EP93xx User’s Guide, each pixel from the frame buffer may go through the color LUT,
followed by the grayscale LUT, as shown in Figure 22 (diagram shows pixel path when color and grayscale
LUTs are both enabled).

As can be seen from the diagram, the upper 3 bits of data from each color are fed to their respective Gray-
scale LUT, which will then generate a 1-bit output depending on those 3 bits and the current horizontal and
vertical position. With this in mind, here are some examples from the example Grayscale (Red) lookup up
table, and explanations of what patterns they will generate.

Since 3 bits of input to the Grayscale LUT determine the output, there are 8 possible shades available for
each color channel. When all of these 3 bits are 0, the output from the grayscale LUT will always be 0. When
all 3 bits are 1, the output will always be 1. This leaves 6 possible shades which are not all 1 or all 0. The
example tables given are for a 25%, 50%, and 75% output. Since this is only 3 of 6 possible shades, the
others may be used for other brightness values. For simplicity, these are repeated in the example table
(which means the example tables have 5 of 8 possible values).

For the pixel value of Red[7:5] = 000b, we will use the entries at locations base+0x00, base+0x20,
base+0x40, and base+0x60. Note that all of these entries are 0, which means that regardless of horizontal
position, vertical position, or frame number the output will be 0.

Similarly, for the pixel value of Red[7:5] = 111b, we will use the entries at locations base+0x1C, base+0x3C,
base+0x5C, and base+0x7C. All of the entries at these locations are 1, and therefore the output value from
the LUT will always be 1.

The remaining input shades of Red[7:5] = 001b to 110b will give various shades of gray. For the case of
Red[7:5] = 001b, the following output patterns will be generated:

Red
Grayscale

LUT

Color LUT
256x24
SRAM

To Color
Mux and

Pixel
Shifting
Logic

Pixel data
from pixel
MUX and
blink logic

Red[7:5]

Green
Grayscale

LUT

Blue
Grayscale

LUT

Green[7:5]

Blue[7:5]

3

3

3

Gray Scale Generator

1

1

1

Figure 22. Color and Grayscale LUT

http://www.cirrus.com

AN269

AN269REV1 47

The interpretation of this diagram is simple. For the first video frame, if the color Red[7:5] = 001b covers the
entire screen, then the red pixel output will be as shown in the following table (where x,y = 0,0 is the top left
of the screen):

As can be seen from the diagram above, the patterns repeat based on horizontal and vertical positions. The
same will occur during frames 1, 2, and 3.

Since each pixel is on 25% of the total time, this entry in the grayscale table will produce 25% brightness on
the red channel. Note again that the actual pixel output from the grayscale generator is only 1 pixel, but the
value of that pixel depends on the horizontal position, vertical position, and frame number.

Frame 0 HCNT
=00b

HCNT
=01b

HCNT
=10b

HCNT
=11b Frame 1 HCNT

=00b
HCNT
=01b

HCNT
=10b

HCNT
=11b

VCNT=00b 0 1 0 0 0 0 0 1

VCNT=01b 0 0 1 0 1 0 0 0

VCNT=10b 0 0 0 1 0 1 0 0

VCNT=11b 1 0 0 0 0 0 1 0

Frame 2 HCNT
=00b

HCNT
=01b

HCNT
=10b

HCNT
=11b Frame 3 HCNT

=00b
HCNT
=01b

HCNT
=10b

HCNT
=11b

VCNT=00b 0 0 1 0 1 0 0 0

VCNT=01b 0 1 0 0 0 0 0 1

VCNT=10b 1 0 0 0 0 0 1 0

VCNT=11b 0 0 0 1 0 1 0 0

Table 8. Grayscale Output for Red[7:5] = 001b

x,y x=0 x=1 x=2 x=3 x=4 x=5 x=6 x=7

etc.

y=0 0 1 0 0 0 0 0 1

y=1 0 0 1 0 1 0 0 0

y=2 0 0 0 1 0 1 0 0

y=3 1 0 0 0 0 0 1 0

y=4 0 1 0 0 0 1 0 0

y=5 0 0 1 0 0 0 1 0

y=6 0 0 0 1 0 0 0 1

y=7 1 0 0 0 1 0 0 0

etc.

Table 9. Grayscale Output for Red[7:5] = 001b, First Video Frame

http://www.cirrus.com

48 AN269REV1

AN269
For the case of Red[7:5] = 011b, the following output patterns will be generated:

For this pixel input value, the pixel output value is on 50% of the time, which means that this will produce
50% brightness on the red channel.

For the case of Red[7:5] = 101b, the following output patterns will be generated:

For this pixel input value, the pixel output value is on 75% of the time, which means that this will produce
75% brightness on the red channel.

Frame 0 HCNT
=00b

HCNT
=01b

HCNT
=10b

HCNT
=11b Frame 1 HCNT

=00b
HCNT
=01b

HCNT
=10b

HCNT
=11b

VCNT=00b 1 1 0 0 0 0 1 1

VCNT=01b 1 0 1 0 0 1 0 1

VCNT=10b 0 0 1 1 1 1 0 0

VCNT=11b 1 0 1 0 0 1 0 1

Frame 2 HCNT
=00b

HCNT
=01b

HCNT
=10b

HCNT
=11b Frame 3 HCNT

=00b
HCNT
=01b

HCNT
=10b

HCNT
=11b

VCNT=00b 1 0 1 0 0 1 0 1

VCNT=01b 1 1 0 0 0 0 1 1

VCNT=10b 1 0 1 0 0 1 0 1

VCNT=11b 0 0 1 1 1 1 0 0

Table 10. Grayscale Output for Red[7:5] = 011b

Frame 0 HCNT
=00b

HCNT
=01b

HCNT
=10b

HCNT
=11b Frame 1 HCNT

=00b
HCNT
=01b

HCNT
=10b

HCNT
=11b

VCNT=00b 1 0 1 1 VCNT=00b 1 1 1 0

VCNT=01b 1 1 0 1 VCNT=01b 0 1 1 1

VCNT=10b 1 1 1 0 VCNT=10b 1 0 1 1

VCNT=11b 0 1 1 1 VCNT=11b 1 1 0 1

Frame 2 HCNT
=00b

HCNT
=01b

HCNT
=10b

HCNT
=11b Frame 3 HCNT

=00b
HCNT
=01b

HCNT
=10b

HCNT
=11b

VCNT=00b 1 1 0 1 VCNT=00b 0 1 1 1

VCNT=01b 1 0 1 1 VCNT=01b 1 1 1 0

VCNT=10b 0 1 1 1 VCNT=10b 1 1 0 1

VCNT=11b 1 1 1 0 VCNT=11b 1 0 1 1

Table 11. Grayscale Output for Red[7:5] = 101b

http://www.cirrus.com

AN269

AN269REV1 49

To edit the entries in the grayscale LUT, the first step is to create the pixel pattern for each frame. As noted
in the EP93xx User’s Guide, there can be 3 or 4 horizontal pixels, 3 or 4 vertical pixels, and 3 or 4 video
frames in the pattern.

As an example, take the frame pattern shown in Table 12

In the example above, the pattern uses 4 columns, 3 rows, and 3 frames. The areas shaded in gray are not
used in this example, and therefore bits D18=D17=0 and D16=1 for this pattern. Now an input pixel value
that will generate this pattern should be chosen. This can be any of the 8 available input values except 000b
and 111b, which will always generate a 0 or 1 output, respectively. For this example, assume an entry of
010b.

For an input pixel value of 010b, the relevant entries in the grayscale LUT are base+0x08, base+0x28,
base+0x48, and base+0x68. This yields the table (by transposing values from Table 12) shown below.

Frame 0 HCNT
=00b

HCNT
=01b

HCNT
=10b

HCNT
=11b Frame 1 HCNT

=00b
HCNT
=01b

HCNT
=10b

HCNT
=11b

VCNT=00b 1 0 1 1 VCNT=00b 1 1 1 0

VCNT=01b 1 1 0 1 VCNT=01b 0 1 1 1

VCNT=10b 1 1 1 0 VCNT=10b 1 0 1 1

VCNT=11b X X X X VCNT=11b X X X X

Frame 2 HCNT
=00b

HCNT
=01b

HCNT
=10b

HCNT
=11b Frame 3 HCNT

=00b
HCNT
=01b

HCNT
=10b

HCNT
=11b

VCNT=00b 1 1 0 1 VCNT=00b X X X X

VCNT=01b 1 0 1 1 VCNT=01b X X X X

VCNT=10b 0 1 1 1 VCNT=10b X X X X

VCNT=11b X X X X VCNT=11b X X X X

Table 12. Example Grayscale pattern generation

Frame Vert Horz VCNT
(lines) 11 11 11 11 10 10 10 10 01 01 01 01 00 00 00 00 GrySclLUT

Address *4

Ctr Ctr Ctr HCNT
(pixels) 11 10 01 00 11 10 01 00 11 10 01 00 11 10 01 00 Frame Pixel

D18 D17 D16 register
address D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 Value

0 0 1 base + 0x08 0 0 0 0 0 0 1 0 1 1 0 0 0 0 0 1 00 010

0 0 1 base + 0x28 0 0 0 0 1 1 0 0 0 0 1 0 0 0 1 0 01 010

0 0 1 base + 0x48 0 0 0 0 0 0 0 1 1 0 0 1 1 1 0 0 10 010

0 0 1 base + 0x68 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 11 010

Table 13. Example Entries for Sample Pattern

http://www.cirrus.com

50 AN269REV1

AN269
Table entries that are don’t cares (indicated by gray shading) are written as 0, but can be written as 1. If the
pixel value of 010b from the example Red grayscale LUT is overwritten, it will then become the following:

const unsigned long rgb_gs_lut_r[32] =
{
 // ALL 0 , 25% , EXAMPLE , 50% , 50% , 75% , 75% , 100%
 0x00070000,0x00071842,0x000102c1,0x00075c53,0x00075c53,0x0007e7bd,0x0007e7bd,0x0007ffff,
 0x00070000,0x00074218,0x00010c22,0x0007a3ac,0x0007a3ac,0x0007bde7,0x0007bde7,0x0007ffff,
 0x00070000,0x00078124,0x0001019c,0x0007c535,0x0007c535,0x00077edb,0x00077edb,0x0007ffff,
 0x00070000,0x00072481,0x00010000,0x00073aca,0x00073aca,0x0007db7e,0x0007db7e,0x0007ffff
};

http://www.cirrus.com

AN269

AN269REV1 51

8. RASTER MEMORY BUS BANDWIDTH CALCULATION
Since the raster engine uses the main memory of the EP93xx, the total memory bandwidth should be considered
when choosing a display size and bit depth for the frame buffer. Many other blocks also use the memory bus for
transfers, including the USB Host port, the IDE controller, graphics accelerator, and various peripherals via the DMA
engine. Note that the priorities each device is given determine the overall memory bandwidth priorities.

If, for example, a large display is used with a large number of bits per pixel and a high refresh rate, the memory
bandwidth to raster engine may prohibit other devices from functioning properly. In another extreme, if a device re-
quires high bandwidth and is combined with a large display at high refresh and high bit depth, “tearing” of the video
may occur. The best solution to this is to use a display with a smaller resolution or less bit depth in the frame buffer
if other devices are using a large portion of the memory bandwidth.

The formula for calculating the memory bandwidth usage of the raster engine is as follows:

[(Horizontal Resolution) * (Vertical Resolution)] * (Bits per pixel) * 1/8 byte/bit * 1/4 words/byte * (Refresh Rate in
Hertz) = Raster Bandwidth in 32-bit Words/second

Here is an example of a 320x240 LCD, running at 75 Hz with a color depth of 4 bits per pixel:

[(320 Pixels) * (240 Pixels)] * (4 bits per pixel) * 1/8 byte/bit * 1/4 words/byte * (75 Hz) = 720000 32-bit words/second

http://www.cirrus.com

52 AN269REV1

AN269
Appendix A: Example HSYNC/VSYNC-Style LCD Display - LG/Philips’s LB064V02-B1
The display used in this example is an LG/Philips LB064V02-B1. Relevant specifications taken from the datasheet
are as follows:

The first step in setting up the EP93xx raster engine for this display involves determining the proper
SPCLK rate. Using the equations from section “Setting Up Display Timing” on page 16:

tHORIZ = tHACTIVE + tHFRONTPORCH + tHSYNC + tHBACKPORCH

tHORIZ = 640 + 24 + 96 + 40 = 800 (SPCLK periods)

tVERT = tVACTIVE + tVFRONTPORCH + tVSYNC + tVBACKPORCH

tVERT = 480 + 10 + 2 + 33 = 525 (HSYNC pulses)

fVSYNC = 60 Hz

VIDCLK = tHORIZ * tVERT * fVSYNC

VIDCLK = 800 * 525 * 60 = 25200000 SPCLK periods per second (25.2 MHz)

Now that the VIDCLK rate is known, the source of that clock must be determined. This is done using the algorithm
shown in Section 3 For this example we will use the actual frequency (not 2x the frequency) and the possible PDIV

Item MIN TYP MAX UNIT

DCLK Frequency 22 25 28 MHz

Hsync Width 24 96 144 DCLK pulses

Vsync Width 2 2 - Hsync pulses

Vsync Frequency 55 60 65 Hz

Horizontal Valid 640 640 640 DCLK pulses

Horizontal Back Porch 16 40 - DCLK pulses

Horizontal Front Porch 16 24 - DCLK pulses

Horizontal Blank 56 160 (non-active area) DCLK pulses

Vertical Valid 480 480 480 Hsync pulses

Vertical Back Porch 2 33 - Hsync pulses

Vertical Front Porch 2 10 - Hsync pulses

Vertical Blank 6 45 (non active area) Hsync pulses

Table 14. LB064V02-B1 Specifications

http://www.cirrus.com

AN269

AN269REV1 53

values of 2, 2.5, and 3. This yields possible values of VDIV. Using those values as PDIV and VDIV, we can compute
the error in VIDCLK by subtracting the desired value of SPCLK (25.2 MHz). Assuming an external clock rate of
14.745600 MHz, PLL1 = 400 MHz, PLL2 = 384 MHz, we come up with the following table of values:

Next, the Horizontal Synchronization Signals can be determined, using the equations in “Setting Up Display Timing”
on page 16:

HClkTotal = tHORIZ – 1

HClkTotal = 800 – 1 = 799 (VIDCLK periods)

therefore:

HSyncStart = HClkTotal

HSyncStart = 799

HSyncStop = HClkTotal – tHSYNC

HSyncStop = 799 – 96 = 703

HBlankStart = HClkTotal - tHSYNC - tHBACKPORCH - 1

HBlankStart = 799 - 96 - 40 - 1 = 662

HBlankStop = tHFRONTPORCH - 1

HBlankStop = 23 - 1 = 22

HActiveStart = HBlankStart

HActiveStart = 662

Input Frequency and Source = fIN VDIV = fIN /
(PDIV*SPCLK)

Actual SPCLK Rate
= fIN / (PDIV*VDIV) Error

External Clock = 14.7456 MHz

PDIV = 2 0 N/A[foot]

PDIV = 2.5 0 N/A[foot]

PDIV = 3 0 N/A[foot]

PLL1 = 400 MHz

PDIV = 2 8 25.0 MHz 0.2 MHz

PDIV = 2.5 6 26.7 MHz 1.5 MHz

PDIV = 3 5 26.7 MHz 1.5 MHz

PLL2 = 384 MHz

PDIV = 2 8 24.0 MHz

PDIV = 2.5 6 25.6 MHz

PDIV = 3 5 25.6 MHz

Table 15. Determination of VIDCLK source

http://www.cirrus.com

54 AN269REV1

AN269
HActiveStop = HBlankStop

HActiveStop = 22

Since no clock gating is required, the HClkStart should be set to HClkTotal and HClkStop should be set to HClkStop
to HClkTotal + 1

HClkStart = HClkTotal

HClkStart = 799

HClkStart = HClkTotal + 1

HClkStop = 800

Now, the vertical timing register settings can be determined. Using the equations from “Vertical Alignment Signals”
on page 22, the following values are obtained:

VLinesTotal = tVERT – 1

VLinesTotal = 525 - 1 = 524

VSyncStart = VLinesTotal

VSyncStart = 524

VSyncStop = VLinesTotal – tVSYNC

VSyncStop = 524 - 2 = 522

VBlankStart = VLinesTotal - tVSYNC - tVBACKPORCH

VBlankStart = 524 - 2 - 33 = 489

VBlankStop = tVFRONTPORCH - 1

VBlankStop = 9

VActiveStart = VBlankStart

VActiveStart = 489

VActiveStop = VBlankStop

VActiveStop = 9

Again, no clock gating is required, so we can set VClkStart to VLinesTotal and VClkStop to VLinesTotal+1:

VClkStart = VLinesTotal = 524

VClkStop = VLinesTotal + 1 = 525

http://www.cirrus.com

AN269

AN269REV1 55

The output mode for this display (taken from table “Output Pixel Transfer Modes“ in the Raster section of the EP93xx
User’s Guide) is “single pixel per clock up to 24 bits wide“ which yields the connections shown in Table 16 (level
buffering may be required to meet the electrical characteristics).

EP93xx Pin
Name

Corresponding Entry in Table “Output
Pixel Transfer Modes” in the EP93xx

User’s Guide Raster Chapter

LB064V02-B1 Pin Name
(Level shifting may be

required)
LB064V02-B1 Pin

Number
SPCLK X DCLK 5
BLANK X DE 6

VCSYNC X VSYNC 7
HSYNC X HSYNC 8

P[12] R[2] R0 10
P[13] R[3] R1 11
P[14] R[4] R2 12
P[15] R[5] R3 13
P[16] R[6] R4 14
P[17] R[7] R5 15
P[6] G[2] G0 17
P[7] G[3] G1 18
P[8] G[4] G2 19
P[9] G[5] G3 20
P[10] G[6] G4 21
P[11] G[7] G5 22
P[0] B[2] B0 24
P[1] B[3] B1 25
P[2] B[4] B2 26
P[3] B[5] B3 27
P[4] B[6] B4 28
P[5] B[7] B5 29

Table 16. Connections to a LG/Philips LB064V02-B1

http://www.cirrus.com

56 AN269REV1

AN269
Appendix B:Example Frame Type 1 Display - Kyocera’s KCS057QV1AJ-G20
For this section, we will be using the Kyocera KCS057QV1AJ-G20 3-color STN display. The relevant timing speci-
fications from the datasheet are shown in Table 17.

Other relevant information from the Kyocera datasheet includes the horizontal and vertical resolution, which is
320x240, and the ideal refresh rate, which is 73 Hz (taken from the “Frame Frequency”). Since the display operates
in 2-2/3 pixel mode, there will be 1 VIDCLK/Pixel.

The first step in figuring the timings is to determine the VIDCLK rate using the following formula:

DesiredVidClkFreq = {[(VIDCLKs/Pixel) * (Horizontal Resolution)] + [(2 SPCLKs for each region)*(4 regions)]} *
(Vertical Resolution) * (Desired Refresh Rate)

DesiredVidClkFreq = {[(1 VIDCLK/Pixel) * (320 Pixels)] + [(2 SPCLKs for each region)*(4 regions)]} * (240 Pixels) *
(73 Hz) = (320 + 8)*(240)*(73) = 5746560 Hz

Note that this is a first estimate of the VIDCLK rate, and may need to be increased to meet timing specifications on
the part.

Next, the VIDCLKDIV register should be set up to deliver a 5746560-Hz VIDCLK. This is done using the algorithm
shown in the section “Generation of the Video Clock, VIDCLK” on page 2. Using this yields a VIDCLK of just over
5.8 MHz

The VidClkPeriod is the period of the actual VIDCLK rate:

VidClkPeriod = 1 / ActualVidClkFreq = 1 / 5.8 MHz = 172 ns

Timing
Parameter Kyocera Datasheet Symbol Value

tHSYNCH tWLPH 50 ns

tHSYNCL tWLPL 370 ns

tHSYNCSPCLK tLC 120-tWLPH (min 70 ns)

tSPCLKHSYNC tCL 0

tSPCLK

tHVCSYNC tFS 100 ns

tVCHSYNC tFH 30 ns

Table 17. Kyocera Display Timings

http://www.cirrus.com

AN269

AN269REV1 57

Once the VIDCLKDIV register has been setup, the actual VIDCLK rate can be used for setting up the horizontal
LOAD/HSYNC pulse timing. To do this, we first determine the time spent on a single line. This is done by first de-
termining the line period and then the number:

LinePeriod = 1 / [(refresh rate) * (vertical resolution)] = 1 / (73 Hz * 240) = 57077 ns

NumVideoClocks = LinePeriod/VidClkPeriod = 57077 ns / 172 ns = 331

ActiveVidClks = (VIDCLKs/Pixel) * (horizontal resolution) = 1 VIDCLK/Pixel * 320 Pixels = 320 VIDCLKs

LoadHighVidClks = (tHSYNCH / VidClkPeriod) + 1 = (50 ns / 172 ns) + 1 = 1 VIDCLK

FrameHoldVidClks = (tHVCSYNC / VidClkPeriod) + 1 = (30 ns / 172 ns) + 1 = 1 VIDCLK

LoadCPVidClks = [(tHSYNCSPCLK - tHVCSYNC) / VidClkPeriod] + 1 = [(70 ns - 30 ns) / 172 ns] + 1 = 1 VIDCLK

CPLoadVidClks = (tSPCLKHSYNC / VidClkPeriod) + 1= (0 ns / 172 ns) + 1 = 1 VIDCLK

AvailableVidClks = NumVideoClocks - ActiveVidClks - LoadHighVidClks - FrameHoldVidClks -

LoadCPVidClks - CPLoadVidClks

AvailableVidClks = 331 - 320 - 1 - 1 - 1 - 1 = 7 VIDCLKs

Distribute:

LoadHighVidClks = 3

FrameHoldVidClks = 3

LoadCPVidClks = 3

CPLoadVidClks = 2

HClksTotal = NumVideoClocks - 1 = 331 - 1 = 330

HSyncStart = LoadHighVidClks + FrameHoldVidClks - 1 = 3 + 3 - 1= 5

HSyncStop = FrameHoldVidClks - 1 = 3 - 1 = 2

HActiveStart = HClksTotal - LoadCPVidClks - 1= 330 - 3= 327

HActiveStop = HClksTotal - LoadCPVidClks - ActiveVidClks - 1= 330 - 3 - 320 = 7

HClksStart = HClksTotal - LoadCPVidClks - 6 = 330 - 3 - 6 = 321

HClkStop = HClksTotal - LoadCPVidClks - ActiveVidClks - 6 = 330 - 3 - 320 - 6 = 1

Note that the blank output is not used, so 0 can be assigned to the horizontal blank timing registers:
HBlankStart = 0

HBlankStop = 0

VLinesTotal = (vertical resolution) - 1 = 240 - 1 = 239

VSyncStart = VLinesTotal = 239

VSyncStop = VLinesTotal - 1 = 239 - 1 = 238

VActiveStart = VLinesTotal = 239

VActiveStop = VLinesTotal + 1 = 239 + 1 = 240

VClkStart = VLinesTotal = 239

VClkStop = VLinesTotal + 1 = 239 + 1 = 240

VBlankStart = 0

VBlankStop = 0

http://www.cirrus.com

58 AN269REV1

AN269
The output mode for this display is 2-2/3 mode, and can be seen in Figures 5, 6, and 7, which yields the connections
shown in Table 18 (level buffering may be required to meet the electrical characteristics).

EP93xx Pin
Name

Corresponding Entry in Table “Output
Pixel Transfer Modes” in the EP93xx

User’s Guide Raster Chapter

KCS057QV1AJ-G20 Pin
Name (Level shifting may

be required)
LB064V02-B1 Pin

Number
SPCLK X CP 3

VCSYNC X FRM 1
HSYNC X LOAD 2

P[0] B0[7] / R2[7] / G5[7] D7 8
P[1] G0[7] / B3[7] / R5[7] D6 9
P[2] R0[7] / G3[7] / B6[7] D5 10
P[3] B1[7] / R3[7] / G6[7] D4 11
P[4] G1[7] / B4[7] / R6[7] D3 12
P[5] R1[7] / G4[7] / B7[7] D2 13
P[6] B2[7] / R4[7] / G7[7] D1 14
P[7] G2[7] / B5[7] / R7[7] D0 15

Table 18. Connections to a Kyocera KCS057QV1AJ-G20

http://www.cirrus.com

AN269

AN269REV1 59

Appendix C:Example 4-BIT STN-Style LCD Display
The display used in this example is monochrome STN LCD display as HOSIDEN HLAM6323. The Relevant timing
specifications taken from the datasheet are as follows:

Figure 23. HOSIDEN HLAM6323 Signal Timing Specification

http://www.cirrus.com

60 AN269REV1

AN269
The first step in setting up the EP93XX raster engine for this display involves determining the proper
SPCLK rate. Using the following equations:

tHORIZ = tHACTIVE + tHFRONTPORCH + tHSYNC + tHBACKPORCH

tHORIZ = 80 + 2 + 1 + 7 = 90 (SPCLK periods)

tVERT = tVACTIVE + tVFRONTPORCH + tVSYNC + tVBACKPORCH

tVERT = 240 + 0 + 0 + 0 = 240

fVSYNC = 70 Hz

SPCLK = tHORIZ * tVERT * fVSYNC

SPCLK = 90 * 240 * 70 = 1512000 SPCLK periods per second (1.5 MHz)

Now that the SPCLK rate is known, the source of that clock must be determined. This is done using the algorithm.
For this example we will use the actual frequency (not 2x the frequency) and the possible PDIV values of 2, 2.5, and
3. This yields possible values of VDIV. Using those values as PDIV and VDIV, we can compute the error in SPCLK
by subtracting the desired value of SPCLK (1.478 MHz). Assuming an external clock rate of 14.745600 MHz,
PLL1=400 MHz, PLL2=384 MHz, we come up with the following table of values:

Table 19. Possible SPCLK Sources for HOSIDEN HLAM6323

http://www.cirrus.com

AN269

AN269REV1 61

Next, the Horizontal Synchronization Signals can be determined, using the following equations:

HClkTotal = tHORIZ - 1

HClkTotal = 90 - 1 = 89 (SPCLK periods)

Therefore:

HSyncStart = HClkTotal

HSyncStart = 89

HSyncStop = HClkTotal - tHSYNC

HSyncStop = 89 - 1 = 88

HBlankStart = HClkTotal - tHSYNC - tHFRONTPORCH - 1= 89 - 1 - 2 - 1 = 85

HBlankStop = HClkTotal - tHSYNC - tHFRONTPORCH - tActive - 1 = 89 - 1 - 2 - 80 - 1= 5

HActiveStart = HBlankStart = 85

HActiveStop = HBlankStop = 5

HClkStart = HClkTotal - tHSYNC - tHFRONTPORCH - 6 = 89 - 1 - 2 - 6 = 80

HClkStop = HClkTotal - tHSYNC - tHFRONTPORCH - tActive - 1 = 89 - 1 - 2 - 80 - 6 = 0

Now, the vertical timing register settings can be determined. Using the equations from "Vertical Alignment Signals",
the following values are obtained:

VLinesTotal = Tvert

VLinesTotal = 240

VSyncStart = VLinesTotal -1 = 239

VSyncStop = VSyncStart -1 = 238

VBlankStart = 0

VBlankStop = 0

VActiveStart =239

VActiveStop =240

Again, we can set VClkStart and VClkStop to VLinesTotal:

VClkStart = VClkStop = VLinesTotal = 240

http://www.cirrus.com

62 AN269REV1

AN269

Figure 24. HOSIDEN HLAM6323 Signal Timing in an EP93xx System
(PIXMODE = 0x1401 - 4 Bits per Pixel)

Table 20. EP93xx to HOSIDEN HLAM6323 Connections

EP93XX Pin
Name

EP93xx Raster Signal
Name

STN LCD
Pin Name

HLM6323
Pin Number

VCSYN Frame signal YD 1
HSYN Line signal LP 11
PCLK CLK XCL 10
P[1] B0 D0 6
P[2] B1 D1 5
P[3] B2 D2 4
P[4] B3 D3 3

BLANK /DOFF 13
P[17] AC M 7

http://www.cirrus.com

AN269

AN269REV1 63

C.1 Frame Buffer Organization, 1 Bit per Pixel, 320 x 240

Figure 25. Frame Buffer Organization for HOSIDEN HLAM6323
(1 bit per Pixel, 320 x 240)

Screen

32 bit
Byte3 ... Byte0

Bit31 … Bit24 … Bit7 … Bit0
Pixel24 Pixel 31 Pixel0 Pixel7

Word0 … Word9

Line 0

Line 239

http://www.cirrus.com

64 AN269REV1

AN269

C.2 Reference Schematic for HOSIDEN HLAM6323 in an EP93xx System

5V
_D

0
5V

_D
1

5V
_D

2
5V

_D
3

5V
_F

R
A

M
E5V

_M

5V
_C

L
1

5V
_C

L
2

5V
_D

O
FF

G
N

D

V
E

E
(-

20
V

)

1
2

Ju
m

p_
M

C
O

N
2

1 2 3 4 5 6 7 8 9 10 11 12 13 14

ST
N

 4
bi

t
B

/W
 L

C
D

C
O

N
14

R
1

C
O

N
T

R
A

ST

G
N

D

5V

G
N

D

2B
1

13

1B
1

2

1B
2

3

1B
3

5

1B
4

6

1B
5

8

1B
6

9

1B
7

11

1B
8

12

2B
2

14

2B
3

16

2B
4

17

2B
5

19

2B
6

20

2B
7

22

2B
8

23

G
N

D
28

G
N

D
34

G
N

D
39

G
N

D
45

G
N

D
21

G
N

D
15

G
N

D
10

G
N

D
4

2D
IR

24

2O
E

25

1D
IR

1

1O
E

48

2
A

8
26

2
A

7
27

2
A

6
29

2
A

5
30

2
A

4
32

2
A

3
33

2
A

2
35

2
A

1
36

1
A

8
37

1
A

7
38

1
A

6
40

1
A

5
41

1
A

4
43

1
A

3
44

1
A

2
46

1
A

1
47

VCC
7

VCC
18

VCC
31

VCC
42

74
L

V
16

42
45

74
L

V
16

42
45

P
W

R
_5

V
0

P
W

R
_3

V
3

G
N

D
G

N
D

5V
_D

0
5V

_D
1

5V
_D

2
5V

_D
3

5V
_F

R
A

M
E

5V
_M

5V
_C

L
1

5V
_C

L
2

5V
_D

O
FF

P
W

R

B
L

A
N

K
SP

C
L

K

L
C

D
17

_A
C

V
S_

C
SY

N
C

L
C

D
1

L
C

D
2

L
C

D
3

L
C

D
4

3V

G
N

D

G
N

D

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
16

17
18

19
20

21
22

23
24

25
26

27
28

29
30

31
32

33
34

35
36

37
38

39
40

E
P

93
xx

_L
C

D

H
E

A
D

E
R

 2
0X

2

L
C

D
0

L
C

D
1

L
C

D
2

L
C

D
3

L
C

D
4

L
C

D
5

L
C

D
6

L
C

D
7

L
C

D
8

L
C

D
9

L
C

D
10

L
C

D
11

L
C

D
12

L
C

D
13

L
C

D
14

L
C

D
15

_Y
SC

L
L

C
D

16
_X

E
C

L
L

C
D

17
_A

C

SP
C

L
K

H
SY

N
C

V
S_

C
SY

N
C

B
L

A
N

K

B
R

IG
H

T
_1

P
W

R
_3

V
3

P
W

R
_5

V
0

P
W

R
_1

2V
P

W
R

_1
2V

G
P

IO
1

R
2_

L
C

D 10
K

R
3_

L
C

D
10

K5V
3V

12
V

S
om

e
L

C
D

s
d
o

no
t n

ee
d

 t
hi

s
si

gn
al

 .

4
B

its
 M

od
e

W
e

co
nn

ec
te

d
B

[0
,1

,2
,3

]
 t

o
ST

N
 L

C
D

 D
[0

..3
]. H

SY
N

C

Figure 26. Schematic for HOSIDEN HLAM6323 in an EP93xx System
(1 Bit per Pixel, 320 x 240)

http://www.cirrus.com

AN269

AN269REV1 65

Contacting Cirrus Logic Support
For all product questions and inquiries contact a Cirrus Logic Sales Representative.
To find one nearest you go to http://www.cirrus.com

IMPORTANT NOTICE
Cirrus Logic, Inc. and its subsidiaries ("Cirrus") believe that the information contained in this document is accurate and reliable. However, the information is subject
to change without notice and is provided "AS IS" without warranty of any kind (express or implied). Customers are advised to obtain the latest version of relevant
information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale
supplied at the time of order acknowledgment, including those pertaining to warranty, indemnification, and limitation of liability. No responsibility is assumed by Cirrus
for the use of this information, including use of this information as the basis for manufacture or sale of any items, or for infringement of patents or other rights of third
parties. This document is the property of Cirrus and by furnishing this information, Cirrus grants no license, express or implied under any patents, mask work rights,
copyrights, trademarks, trade secrets or other intellectual property rights. Cirrus owns the copyrights associated with the information contained herein and gives con-
sent for copies to be made of the information only for use within your organization with respect to Cirrus integrated circuits or other products of Cirrus. This consent
does not extend to other copying such as copying for general distribution, advertising or promotional purposes, or for creating any work for resale.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROP-
ERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). CIRRUS PRODUCTS ARE NOT DESIGNED, AUTHORIZED OR WARRANTED FOR USE
IN AIRCRAFT SYSTEMS, MILITARY APPLICATIONS, PRODUCTS SURGICALLY IMPLANTED INTO THE BODY, AUTOMOTIVE SAFETY OR SECURITY DE-
VICES, LIFE SUPPORT PRODUCTS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF CIRRUS PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD
TO BE FULLY AT THE CUSTOMER'S RISK AND CIRRUS DISCLAIMS AND MAKES NO WARRANTY, EXPRESS, STATUTORY OR IMPLIED, INCLUDING THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR PARTICULAR PURPOSE, WITH REGARD TO ANY CIRRUS PRODUCT THAT IS USED
IN SUCH A MANNER. IF THE CUSTOMER OR CUSTOMER'S CUSTOMER USES OR PERMITS THE USE OF CIRRUS PRODUCTS IN CRITICAL APPLICA-
TIONS, CUSTOMER AGREES, BY SUCH USE, TO FULLY INDEMNIFY CIRRUS, ITS OFFICERS, DIRECTORS, EMPLOYEES, DISTRIBUTORS AND OTHER
AGENTS FROM ANY AND ALL LIABILITY, INCLUDING ATTORNEYS' FEES AND COSTS, THAT MAY RESULT FROM OR ARISE IN CONNECTION WITH
THESE USES.

Cirrus Logic, Cirrus, and the Cirrus Logic logo designs are trademarks of Cirrus Logic, Inc. All other brand and product names in this document may be trademarks
or service marks of their respective owners.

http://www.cirrus.com
http://www.cirrus.com

	1. Introduction and Scope
	2. How to Determine if an LCD is Compatible with the EP93xx
	3. Generation of the Video Clock, VIDCLK
	4. Using the Horizontal and Vertical Counter for Timing- Signal Generation
	4.1 Counter Offsets
	4.1.1 Horizontal and Vertical Offset Example

	5. General Description of Pixel Output Modes
	6. Setting Up Display Timing
	6.1 HSYNC/VSYNC-Style Displays
	6.1.1 Pixel Data Clock Rate and HClkTotal/VLinesTotal
	6.1.2 Horizontal Alignment Signals
	6.1.3 Vertical Alignment Signals

	6.2 Framed Data Style Displays - Type 1
	6.2.1 VIDCLK and Pixel Data Clock Rate
	6.2.2 Horizontal Alignment Signals
	6.2.3 Vertical Alignment Signals

	6.3 Framed Data Style Displays - Type 2
	6.3.1 VIDCLK and Pixel Data Clock Rate
	6.3.2 Horizontal Alignment Signals
	6.3.3 Vertical Alignment Signals

	6.4 Other Types of Framed Data Displays

	7. Grayscale Look-Up Tables
	7.1 Grayscale Table Example

	8. Raster Memory Bus Bandwidth Calculation

