
Copyright  Cirrus Logic, Inc. 2004
(All Rights Reserved)http://www.cirrus.com
AN253
Optimizing Code Speed for the MaverickCrunch™
Coprocessor
Brett Davis

1. Introduction

This application note is intended to assist developers in optimizing their source code for use with the Mav-
erickCrunch coprocessor. This document begins with a brief overview of the MaverickCrunch coproces-
sor, followed by optimization guidelines and concludes with an example applying the guidelines
discussed.

Multiple facets of code optimization must be considered in order to realize the full benefit of the Maverick-
Crunch coprocessor. The guidelines in this document are categorized as algorithm, compiler, or hardware
optimizations. The discussion on algorithm optimization centers on high level programming details such
as compound expressions and loop unrolling. Next, the compiler optimization guidelines deal with the ef-
fects of compiler optimization on code performance - primarily code size and execution speed. Finally, the
hardware optimization section enumerates optimization guidelines related to the MaverickCrunch copro-
cessor implementation such as IEEE-754 implementation and pipeline stalls.

Note: Algorithm selection will not be discussed in this applications note. It is assumed that the
developer has selected and implemented the correct algorithm for their application.

2. MaverickCrunch

This section introduces and summarizes the features, instruction set and architecture of the Maverick-
Crunch coprocessor. For further in-depth information on these topics, please read Chapter 3 of the User's
Guide.

2.1 Features

The MaverickCrunch coprocessor accelerates IEEE-754 floating point arithmetic, and 32-bit and 64-bit
fixed point arithmetic. The MaverickCrunch coprocessor is an excellent candidate for encoding and de-
coding digital audio, digital signal processing (such as IIR, FIR, FFT) and numeric approximations. Key
features of the MaverickCrunch include:

- IEEE-754 based single and double precision floating point support

- Full IEEE-754 rounding support

- Inexact, Overflow, Underflow, and Invalid Operator IEEE-754 exceptions

- 32/64-bit fixed point integer operations

- Add, multiply, and compare functions for all data types

- Fixed point integer MAC 32-bit input with 72-bit accumulate

- Fixed point integer shifts
1

JAN ‘04
AN253REV1

AN253
- Conversion between floating point and integer data representations

- Sixteen (16) 64-bit general-purpose registers

- Four (4) 72-bit accumulators

- Status and control registers

2.2 Instruction Set

The MaverickCrunch coprocessor's instruction set is robust and includes memory, control, and arithmetic
operations. MaverickCrunch mnemonics are translated by the compiler or assembler into ARM coproces-
sor instructions. For example, the MaverickCrunch mnemonic for double precision floating-point multiply
is:

cfmuld c0, c1, c2

The equivalent ARM coprocessor instruction is:

cdp p4, 1, c0, c1, c2, 1

There are five categories of ARM coprocessor instructions: Data Path (CDP), Load (LDC), Store (STC),
Coprocessor to ARM Moves (MCR), and ARM to coprocessor moves (MRC). CDP instructions include all
arithmetic operations, and any other operation internal to the coprocessor. LDC and STC instructions in-
clude the set of operations responsible for moving data between memory and the coprocessor. MCR and
MRC instructions are responsible for moving data between ARM and coprocessor registers.

Table 1, Table 2 and Table 3 summarize all of the MaverickCrunch's instruction mnemonics. For more
information on the MaverickCrunch instruction set, please see the table: MaverickCrunch Instruction Set
in the User's Guide.

Table 1. MaverickCrunch Load/Store Mnemonics

cfldrs Cd, [Rn] cfldrd Cd, [Rn] cfldr32 Cd, [Rn]

cfldr64 Cd, [Rn] cfstrs Cd, [Rn] cfstrd Cd, [Rn]

cflstr32 Cd, [Rn] cfstr64 Cd, [Rn] cfmvsr Cn, Rd

cfmvdlr Cn, Rd cfmvdhr Cn, Rd cfmv64lr Cn, Rd

cfmv64hr Cn, Rd cfmvsr Rd, Cn cfmvrdl Rd, Cn

cfmvrdh Rd, Cn cfmvr64l Rd, Cn cfmvr64h Rd, Cn

cfmval32 Cd, Cn cfmvam32 Cd, Cn cfmv32a Cd, Cn

cfmv64a Cd, Cn cfmvsc32 Cd, Cn cfmv32sc Cd, Cn

cfcpys Cd, Cn cfcpyd Cd, Cn
2

AN253
Table 2. MaverickCrunch Data Manipulation Mnemonics

Table 3. MaverickCrunch Arithmetic Mnemonics

2.3 Architecture

The MaverickCrunch coprocessor uses the standard ARM coprocessor interface, sharing its memory in-
terface and instruction stream. The MaverickCrunch coprocessor is pipelined, has data forwarding capa-
bilities, and can run synchronously or asynchronously with respect to the ARM920T pipeline.

There are two separate pipelines in the MaverickCrunch coprocessor (see Figure 1). The first pipeline,
five stages long, is used for LDC, STC, MCR, and MRC instructions. Its stages are Fetch (F), Decode (D),
Execute (E), Memory Access (M), and Register Write-Back (W). The second pipeline, seven stages long,
is used for the CDP instructions. Its stages are Fetch (F), Decode (D), Execute/Operand Fetch (E), Exe-
cute (E1), Execute (E2), Execute (E3), and Register Write-Back (W).

The MaverickCrunch LDC/STC/MCR/MRC pipeline is identical to, and 'follows' the ARM920T's pipeline.
That is, the contents of the LDC/STC/MCR/MRC pipeline are identical to the contents of the ARM920T
pipeline.

Note: The ARM pipeline is not shown in Figure 1, but is identical to the LDC/STC/MCR/MRC
pipeline.

The MaverickCrunch CDP pipeline is nearly twice as deep and runs at half the speed of the ARM920T's
pipeline. The CDP pipeline may run asynchronously with respect to the ARM920T's pipeline after the ini-
tial execution stage. Specifically, the CDP pipeline may run asynchronously in the E1, E2, E3 and W stag-
es. Running MaverickCrunch in synchronous mode forces the CDP pipeline to serialize the instruction
stream resulting in an eight-cycle stall per data path instruction. The CDP pipeline's asynchronous capa-
ble stages are shaded in Figure 1.

cfcvtsd Cd, Cn cfcvtds Cd, Cn cfcmp64 Rd, Cn, Cm

cfcvt32d Cd, Cn cfcvt64s Cd, Cn cfcvt32s Cd, Cn

cfcvts32 Cd, Cn cfcvtd32 Cd, Cn cfcvt64d Cd, Cn

cfrshl32 Cm, Cn, Rd cftruncs32 Cd, Cn cftruncd32 Cd, Cn

cfsh64 Cd, Cn, <imm> cfrshl64 Cm, Cn, Rd cfsh32 Cd, Cn, <imm>

cfcmp32 Rd, Cn, Cm cfcmps Rd, Cn, Cm cfcmpd Rd, Cn, Cm

cfabss Cd, Cn cfnegs Cd, Cn cfadds Cd, Cn, Cm

cfsubs Cd, Cn, Cm cfnegd Cd, Cn cfaddd Cd, Cn, Cm

cfsubd Cd, Cn, Cm cfmuld Cd, Cn, Cm cfabs32 Cd, Cn

cfadd64 Cd, Cn, Cm cfneg32 Cd, Cn cfadd32 Cd, Cn, Cm

cfsub32 Cd, Cn, Cm cfmul32 Cd, Cn, Cm cfmac32 Cd, Cn, Cm

cfmsc32 Cd, Cn, Cm cfabs64 Cd, Cn cfneg64 Cd, Cn

cfsub64 Cd, Cn, Cm cfmul64 Cd, Cn, Cm cfmadd32 Ca, Cd, Cn, Cm

cfmsub32 Ca, Cd, Cn, Cm cfmadda32 Ca, Cd, Cn, Cm cfmsuba32 Ca, Cd, Cn, Cm

cfmuls Cd, Cn, Cm cfabsd Cd, Cn
3

AN253
Figure 1. MaverickCrunch Pipelines

3. Code Optimization for MaverickCrunch

This section describes guidelines for writing optimized code for the MaverickCrunch coprocessor. These
guidelines are divided into algorithm, compiler and architecture sections. It is assumed that the correct
algorithm has been chosen, and that all non-hardware specific optimizations have been completed. How-
ever, optimization should not begin until all of the code has been written and tested for function-
ality.

3.1 Algorithms

This section focuses on methods to reduce algorithm execution time. After the code's functionality is ver-
ified, profile and disassemble the objects. Look for and optimize the following:

- Sections of code that are executed most frequently

- Sections of code that take the most CPU cycles to execute

- Inefficiencies in assembly code from the compilation

When optimizing these sections keep in mind the following general concepts of code optimization:

- Avoid Redundancy - store computations rather than recomputing them

- Serialize Code - code should be designed with a minimum amount of branching. Code branching
is expensive. The ARM920T does not support branch prediction

- Code Locality - code executed closely together in time should be placed closely together in
memory, increasing spatial locality of reference and reducing expensive cache misses

Unless your goal is to create small code, code density is not always an indicator of code optimization.
Loop Unrolling is an optimization technique that generally increases code size, but also increases code
speed. This is because unrolled loops iterate fewer times than their unoptimized versions resulting in few-
er index calculations, comparisons and branches taken.

Note: Taken branches are expensive operations, as they take three cycles to complete and cause
the pipeline to be flushed. (There is no branch prediction in the ARM920T.)

Induction Variable Analysis is another speed optimization technique used in the case where a variable
in a loop is a function of the loop index. This variable can be updated each time the index is updated, re-
ducing the number of calculations in the loop.

F D E E1 E2 E3 W CDP

ARM MCLK

F D E M W
LDC/STC
MCR/MRC
4

AN253
Although not a loop optimization technique, Common Sub-Expression Elimination is a speed optimiza-
tion technique that can be used in the case where a complex calculation has redundant sub-expressions.
In this technique, these redundant sub-expressions are calculated once, stored and reused when needed.

Constant Folding is a speed optimization technique used in cases where constant expressions are re-
placed with their final value, rather than calculating these at run-time.

Various other algorithm techniques exist. Each optimization has trade-offs, and should be selected based
on the algorithm's application. For further information, please consult one of the many available books on
algorithm optimization.

3.2 Compilers

This section describes general optimization issues that arise when compiling for the ARM and Maverick-
Crunch coprocessor. Every compiler is different in how it implements and optimizes code. Most compilers
consider the following types of optimizations:

- Peephole - combining several instructions into one simple instruction

- Local - analyzing, reordering and optimizing instructions in a basic block (serial code) for faster
execution

- Loop - reduces time spent in loops by applying basic loop optimizations

- Intraprocedural - optimizes the way control and data are passed between procedures

The following guidelines will generally help the compiler produce optimal ARM and MaverickCrunch code.

Set the appropriate target processor for the compiler, linker and assembler. This would be the
ARM920T. Furthermore, set the correct floating-point support for the compilation. This may either be hard-
ware floating-point support through the MaverickCrunch coprocessor, soft-float support through a floating-
point library, or no floating-point support.

Turn off all debug options. Compiling source code with debugging enabled generates un-optimized ob-
jects. These objects are typically larger, and slower than those compiled without the debugging options
selected. The debugging option forces the compiler to not use all optimization techniques because some
intermediate debug data is lost in the process. Furthermore, the objects are bloated with symbol data for
the debugging tool.

Set the compiler to optimize for code speed. Be sure to experiment with the optimization modes of the
compiler, because some optimizations may have negative unintended effects. For instance, some inter-
mediate results may be optimized out of the code whether these results are needed or not. Please note
that some compilers will optimize code for speed or size better than other compilers.

3.3 Architecture

The following guidelines are specific to the MaverickCrunch hardware. The MaverickCrunch should be
running in asynchronous mode with data forwarding enabled to obtain the highest pipeline
throughput. Additionally, the ARM920T's master clock should be set to run at the highest allowed fre-
quency. Please see the example of the initialization source code in the User’s Guide.
5

AN253
Avoid single or double floating-point division. These operations are not implemented in the Maverick-
Crunch and will be carried out by a soft-float library routine. When possible, calculate the reciprocal during
compile-time and multiply instead. Be vigilant of compounding rounding errors from calculating the recip-
rocal, and repeated multiplication of the reciprocal.

Avoid creating data dependencies in algorithms when performing MaverickCrunch operations. A
data dependency occurs when an instruction takes the output of a previous instruction as its operand. This
dependency will stall the pipeline if the output of the previous instruction is not available for the current
instruction. The following table contains the MaverickCrunch's instruction stall time in cycle counts for
each type of coprocessor instruction.

Table 4. Instruction Stall Time

Consider the following MaverickCrunch code:

fmuls c3, c1, c2 // CDP instruction
fadds c0, c0, c3 // CDP instruction - stalls on c3

In this example, the addition operation stalls for 5 cycles on the product (c3) of the multiplication. However,
if the first instruction had been a double precision multiplication the addition operation would have stalled
on the product (c3) for 11 cycles.

Considering the pipeline stall cycles, the above source code looks like:

fmuls c3, c1, c2 // CDP instruction
<stall cycle>
<stall cycle>
<stall cycle>
<stall cycle>
<stall cycle>
fadds c0, c0, c3 // CDP instruction - stalls on c3

Optimize data-dependent pipeline stalls by interleaving the dependent instructions with indepen-
dent instructions. This will have a positive effect by increasing pipeline throughput. Again, this is espe-
cially important when executing a double precision multiply, and significantly important when executing
adds, compares, or other data-path operations. These interleaved instructions may either be ARM or Mav-
erickCrunch operations and should be placed just after the stalling instruction. However, be judicious
about which interleaved instructions are used so that new data dependencies are not introduced into the
source code.

Finally, the optimized example source code looks like:

INSTRUCTION TYPE CYCLE COUNT

CDP 5

CDP (Multiply Double & 64) 11

LDC/MCR 2

STR/MRC 0
6

AN253
fmuls c3, c1, c2
<Independent ARM/MaverickCrunch Instruction>
<Independent ARM/MaverickCrunch Instruction>
<Independent ARM/MaverickCrunch Instruction>
<Independent ARM/MaverickCrunch Instruction>
<Independent ARM/MaverickCrunch Instruction>
fadds c0, c0, c3

Note: Please be aware that some sequences of MaverickCrunch instructions are not supported.
For an up-to-date list of these instruction sequences, please see the appropriate Errata
Sheet. The Errata Sheets are available at www.cirrus.com. Furthermore, a parsing tool is
available that can identify illegal sequences of MaverickCrunch instructions. This tool is
also available from Cirrus Logic.

Attempt to maximize the throughput of the ARM920T, and MaverickCrunch CDP pipelines by in-
terleaving independent ARM and CDP instructions. The maximum throughput of the CDP pipeline is
one CDP instruction every other ARM CLK. This is because the E1, E2, E3, and W pipeline stages of the
CDP pipeline take two ARM cycles to complete. Please note that MaverickCrunch must be operating in
asynchronous mode to realize this optimization.

Consider the following code sequence:

<Independent MaverickCrunch Instruction A>
<Independent MaverickCrunch Instruction B>
<Independent MaverickCrunch Instruction C>
<Independent ARM Instruction A>
<Independent ARM Instruction B>
<Independent ARM Instruction C>

The above code is inefficient because MaverickCrunch Instructions A, B, and C will stall the ARM’s pipe-
line during their execution of the second cycle in the E1, E2, E3, and W stages. The following code inter-
leaves the MaverickCrunch and ARM instructions, which removes the stalls and maximizes the
throughput of both pipelines.

<Independent MaverickCrunch Instruction A>
<Independent ARM Instruction A>
<Independent MaverickCrunch Instruction B>
<Independent ARM Instruction B>
<Independent MaverickCrunch Instruction C>
<Independent ARM Instruction C>

Utilize both the ARM and co-processor registers, and the data caching capabilities of the ARM
core to reduce the latency of fetching data. For example, FIR filters typically have many filter coeffi-
cients - more coefficients than there are available registers. Many costly memory accesses will be exe-
cuted to load the filter coefficients. One solution to this problem is to load and lock-in the filter coefficients
in a data cache at start-up. This will result in an increase in performance because of the reduction in pipe-
line stalling while waiting for data to transfer from (slower) external memory to the coprocessor.
7

AN253
4. Examples

This example illustrates the process of optimizing code for the MaverickCrunch coprocessor at the archi-
tecture level. The following source code is part of a simple real-time implementation of an FIR filter (Figure
2). There is a data dependency in the accumulate portion of the basic source code (on the left). This data
dependency stalls the MaverickCrunch CDP pipeline for 11 cycles. To reduce this penalty, it is possible
to re-arrange the source code to use the ARM cycles in the shadow of the stall.

Figure 2: FIR Optimization Example

To accomplish this optimization (see Figure 2): 1.) Move the index initialization/update code behind the
cfmuld operation; 2.) Add index initialization code just above the loop construct. This optimization results

// Unoptimized FIR // Optimized FIR

 acc = 0; acc = 0;

add r0,pc,#0x80 ; #0x8544 add r0,pc,#0x80 ; #0x8544

cfldrd c4, [r0] cfldrd c4, [r0]

 for (i = 0; i < n; i++){ // ** initialize array ptrs here **

mov r4,#0 mov r1, r5

b 0x8508 ; (fir + 0x6c) mov r0, r7

 acc += h[i] * z[i]; for (i = 0; i < n; i++){

add r1,r5,r4,lsl #3 // Ptr mov r4,#0

cfldrd c0, [r1] b 0x8508 ; (fir + 0x6c)

add r0,r7,r4,lsl #3 // Ptr

cfldrd c1, [r0] acc += h[i] * z[i];

cfmuld c0, c0, c1 // <-- 11-cycles cfldrd c0, [r1]

cfaddd c4, c4, c0 // <-- stalled cfldrd c1, [r0]

cfmuld c0, c0, c1

add r4,r4,#1

cmp r4,r6 // ** increment ptrs here **

blt 0x84d8 ; (fir + 0x3c) add r1,r5,r4,lsl #3

add r0,r7,r4,lsl #3

 }

cfaddd c4, c4, c0

add r4,r4,#1

cmp r4,r6

blt 0x84d8 ; (fir + 0x3c)

 }

1

2

8

AN253
in a 2-cycle increase in performance per iteration of the loop construct. This increase in performance can
be significant for FIR filters with large numbers of coefficients.

In this next algorithm and architectural optimization example, a Biquad IIR filter (Figure 3) is modified to
reduce the number of loads/stores in the inner loop. The Biquad IIR filter’s difference equation is:

y[n] = b[0]*x[n] + b[1]*x[n-1] + b[2]*x[n-2] - a[1]*y[n-1] - a[2]*y[n-2]

One C implementation of this IIR Biquad difference equation, and the one used for this example is:

double inp, accumulator;
long i;
for (i=0; i<(long)nn; i++)
{

inp = data[i];
accumulator = 0;
accumulator -= filtcoefs[0]*bqd1k_dCstates[0];
accumulator -= filtcoefs[0]*bqd1k_dCstates[1];
accumulator += filtcoefs[2]*inp;
accumulator += filtcoefs[3]*bqd1k_dCstates[2];
accumulator += filtcoefs[4]*bqd1k_dCstates[3];

// Update y[n] states (output history for feedback lines)
bqd1k_dCstates[1] = bqd1k_dCstates[0];
bqd1k_dCstates[0] = accumulator;

// Store the output
data[i] = accumulator;

// Update x[n] states (input history for delay lines)
bqd1k_dCstates[3] = bdq1k_dCstates[2];
bqd1k_dCstates[2] = inp;

}

In the assembly version of the original algorithm (on the left), the filter coefficients are loaded when need-
ed. Consequently, they are loaded in each iteration of the loop. Additionally, the state variables are loaded
when needed and then stored when updated. They are also loaded and stored in each iteration of the
loop.
9

AN253
Figure 3: IIR Optimization Example

To accomplish this optimization (see Figure 3): 1.) Use the additional registers in the MaverickCrunch co-
processor to load the filter and state variables once before the inner loop; 2.) Shuffle the state variables
around in registers during the inner loop; 3.) Store the state variables after the inner loop. This removes
nine loads and four stores from the inner loop. Also note that the copy instructions used to shuffle the state

// Floating-point Biquad IIR // Floating-point Biquad IIR

// (Basic: Non-optimized) // (Optimized)

main_loop cfldrd bqd1k_s0, [bdq1k]

 cfldrd bqd1k_s1, [bdq1k, 8]
 cfldrd temp2, [fcoef] cfldrd bqd1k_s2, [bdq1k, 16]
 cfldrd bqd1k_s0, [bdq1k] cfldrd bqd1k_s3, [bdq1k, 24]
 cfmuld acc, temp2, bqd1k_s0 cfldrd outp, [fcoef]
 cfnegd acc, acc cfldrd temp1, [fcoef, 8]
 cfldrd temp2, [fcoef, 8] cfldrd temp2, [fcoef, 16]

 cfldrd bqd1k_s1, [bdq1k, 8] cfldrd temp3, [fcoef, 24]
 cfmuld temp, temp2, bqd1k_s1 cfldrd temp4, [fcoef, 32]
 cfsubd acc, acc, temp cfnegd outp, outp
 cfldrd temp2, [fcoef, 16] cfnegd temp1, temp1
 cfldrd temp4, [data]
 cfmuld temp, temp2, temp4 main_loop

 cfaddd acc, acc, temp
 cfldrd temp2, [fcoef, 24] cfldrd inp, [data]
 cfldrd bqd1k_s2, [bdq1k, 16] cfmuld acc, outp, bqd1k_s0
 cfmuld temp, temp2, bqd1k_s2 cfmuld temp, temp1, bqd1k_s1
 cfaddd acc, acc, temp cfcpyd bqd1k_s1, bqd1k_s0
 cfldrd temp2, [fcoef, 32] cfaddd acc, acc, temp

 cfldrd bqd1k_s3, [bdq1k, 24] cfmuld temp, temp2, inp
 cfmuld temp, temp2, bqd1k_s3 cfaddd acc, acc, temp
 cfaddd acc, acc, temp cfmuld temp, temp3, bqd1k_s2
 cfstrd acc, [data], 8 cfaddd acc, acc, temp
 cfstrd acc, [bdq1k] cfmuld temp, temp4, bqd1k_s3
 cfstrd bqd1k_s0, [bdq1k, 8] cfcpyd bqd1k_s3, bqd1k_s2

 cfstrd temp4, [bdq1k, 16] cfcpyd bqd1k_s2, inp
 cfstrd bqd1k_s2, [bdq1k, 24] cfaddd acc, acc, temp

 cfcpyd bqd1k_s0, acc
 subs nn, nn, 1
 bgt main_loop subs nn, nn, 1

 bgt main_loop

 ldr temp1, =bqd1k_dCrstates
 cfstrd bqd1k_s0, [temp1]
 cfstrd bqd1k_s1, [temp1, 8]
 cfstrd bqd1k_s2, [temp1, 16]
 cfstrd bqd1k_s3, [temp1, 24]

3

2

1

10

AN253
variables have been interleaved with data dependant instructions in order to reduce their respective stall
penalties.

5. Summary

The optimization guidelines suggested in this document are:

- Write and test all source code before attempting any optimizations

- Focus optimizations on sections of code that are executed most frequently, and take the most CPU
cycles to execute

- Identify and resolve any implementation inefficiencies generated by the compiler

- Set the appropriate target processor for the compiler, linker and assembler

- Turn off all of the compilers debug options

- Set the compiler to optimize the code for speed

- Set the MaverickCrunch coprocessor to run in asynchronous mode with data-forwarding enabled

- Avoid single or double floating-point division

- Avoid creating data dependencies in algorithms when performing MaverickCrunch operations

- Optimize data-dependent pipeline stalls by interleaving the dependent instructions with
independent instructions

- Utilize both the ARM and MaverickCrunch's registers, and the data caching capabilities of the ARM
core to reduce the latency of fetching data from external memory

In summary, this document has detailed many optimization techniques that can improve the performance
of applications written for the MaverickCrunch coprocessor.
11

AN253
Revision Date Changes

1 23 January 2004 Initial Release

Contacting Cirrus Logic Support
For all product questions and inquiries contact a Cirrus Logic Sales Representative.
To find one nearest you go to http://www.cirrus.com/corporate/contacts/sales.cfm

IMPORTANT NOTICE

"Preliminary" product information describes products that are in production, but for which full characterization data is not yet available. Cirrus Logic, Inc. and its sub-
sidiaries ("Cirrus") believe that the information contained in this document is accurate and reliable. However, the information is subject to change without notice and
is provided "AS IS" without warranty of any kind (express or implied). Customers are advised to obtain the latest version of relevant information to verify, before placing
orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowl-
edgment, including those pertaining to warranty, patent infringement, and limitation of liability. No responsibility is assumed by Cirrus for the use of this information,
including use of this information as the basis for manufacture or sale of any items, or for infringement of patents or other rights of third parties. This document is the
property of Cirrus and by furnishing this information, Cirrus grants no license, express or implied under any patents, mask work rights, copyrights, trademarks, trade
secrets or other intellectual property rights. Cirrus owns the copyrights associated with the information contained herein and gives consent for copies to be made of
the information only for use within your organization with respect to Cirrus integrated circuits or other products of Cirrus. This consent does not extend to other copying
such as copying for general distribution, advertising or promotional purposes, or for creating any work for resale.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROP-
ERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). CIRRUS PRODUCTS ARE NOT DESIGNED, AUTHORIZED OR WARRANTED FOR USE
IN AIRCRAFT SYSTEMS, MILITARY APPLICATIONS, PRODUCTS SURGICALLY IMPLANTED INTO THE BODY, LIFE SUPPORT PRODUCTS OR OTHER CRIT-
ICAL APPLICATIONS (INCLUDING MEDICAL DEVICES, AIRCRAFT SYSTEMS OR COMPONENTS AND PERSONAL OR AUTOMOTIVE SAFETY OR SECURI-
TY DEVICES). INCLUSION OF CIRRUS PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK AND CIRRUS
DISCLAIMS AND MAKES NO WARRANTY, EXPRESS, STATUTORY OR IMPLIED, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FIT-
NESS FOR PARTICULAR PURPOSE, WITH REGARD TO ANY CIRRUS PRODUCT THAT IS USED IN SUCH A MANNER. IF THE CUSTOMER OR CUSTOM-
ER'S CUSTOMER USES OR PERMITS THE USE OF CIRRUS PRODUCTS IN CRITICAL APPLICATIONS, CUSTOMER AGREES, BY SUCH USE, TO FULLY
INDEMNIFY CIRRUS, ITS OFFICERS, DIRECTORS, EMPLOYEES, DISTRIBUTORS AND OTHER AGENTS FROM ANY AND ALL LIABILITY, INCLUDING AT-
TORNEYS' FEES AND COSTS, THAT MAY RESULT FROM OR ARISE IN CONNECTION WITH THESE USES.

Cirrus Logic, Cirrus, MaverickCrunch, MaverickKey, and the Cirrus Logic logo designs are trademarks of Cirrus Logic, Inc. All other brand and product names in this
document may be trademarks or service marks of their respective owners.

Microsoft and Windows are registered trademarks of Microsoft Corporation.

MicrowireTM is a trademark of National Semiconductor Corp. National Semiconductor is a registered trademark of National Semiconductor Corp.

Texas Instruments is a registered trademark of Texas Instruments, Inc.

Motorola is a reigistered trademark of Motorola, Inc.

LINUX is a registered trademark of Linus Torvalds.
12

http://www.cirrus.com/corporate/contacts/sales.cfm

	Brett Davis
	1. Introduction
	Note: Algorithm selection will not be discussed in this applications note. It is assumed that the...
	2. MaverickCrunch
	2.1 Features
	2.2 Instruction Set

	Table 1 . MaverickCrunch Load/Store Mnemonics
	Table 2 . MaverickCrunch Data Manipulation Mnemonics
	Table 3 . MaverickCrunch Arithmetic Mnemonics
	2.3 Architecture
	Note: The ARM pipeline is not shown in Figure 1, but is identical to the LDC/STC/MCR/MRC pipeline.

	Figure 1 . MaverickCrunch Pipelines
	3. Code Optimization for MaverickCrunch
	3.1 Algorithms

	Note: Taken branches are expensive operations, as they take three cycles to complete and cause th...
	3.2 Compilers
	3.3 Architecture

	Table 4 . Instruction Stall Time
	Note: Please be aware that some sequences of MaverickCrunch instructions are not supported. For a...
	4. Examples

	Figure 2 : FIR Optimization Example
	Figure 3 : IIR Optimization Example
	5. Summary

