
The ARM Instruction Set - ARM University Program - V1.0 1

The ARM Instruction Set

ARM
Advanced RISC Machines

The ARM Instruction Set - ARM University Program - V1.0 2

Processor Modes

* The ARM has six operating modes:
• User (unprivileged mode under which most tasks run)

• FIQ (entered when a high priority (fast) interrupt is raised)

• IRQ (entered when a low priority (normal) interrupt is raised)

• Supervisor (entered on reset and when a Software Interrupt instruction is
executed)

• Abort (used to handle memory access violations)

• Undef (used to handle undefined instructions)

* ARM Architecture Version 4 adds a seventh mode:
• System (privileged mode using the same registers as user mode)

The ARM Instruction Set - ARM University Program - V1.0 3

* ARM has 37 registers in total, all of which are 32-bits long.
• 1 dedicated program counter

• 1 dedicated current program status register

• 5 dedicated saved program status registers

• 30 general purpose registers

* However these are arranged into several banks, with the accessible
bank being governed by the processor mode. Each mode can access

• a particular set of r0-r12 registers

• a particular r13 (the stack pointer) and r14 (link register)

• r15 (the program counter)

• cpsr (the current program status register)

and privileged modes can also access
• a particular spsr (saved program status register)

The Registers

The ARM Instruction Set - ARM University Program - V1.0 4

Register Organisation

General registers and Program Counter

Program Status Registers

r15 (pc)

r14 (lr)

r13 (sp)

r14_svc

r13_svc

r14_irq

r13_irq

r14_abt

r13_abt

r14_undef

r13_undef

User32 / System FIQ32 Supervisor32 Abort32 IRQ32 Undefined32

cpsr

sprsr_fiqsprsr_fiqsprsr_fiq spsr_abtspsr_svcsprsr_fiqsprsr_fiqspsr_fiq sprsr_fiqsprsr_fiqsprsr_fiqsprsr_fiqsprsr_fiqspsr_irq

r12

r10

r11

r9

r8

r7

r4

r5

r2

r1

r0

r3

r6

r7

r4

r5

r2

r1

r0

r3

r6

r12

r10

r11

r9

r8

r7

r4

r5

r2

r1

r0

r3

r6

r12

r10

r11

r9

r8

r7

r4

r5

r2

r1

r0

r3

r6

r12

r10

r11

r9

r8

r7

r4

r5

r2

r1

r0

r3

r6

r12

r10

r11

r9

r8

r7

r4

r5

r2

r1

r0

r3

r6

r15 (pc) r15 (pc) r15 (pc) r15 (pc) r15 (pc)

cpsrcpsrcpsrcpsrcpsr

r14_fiq

r13_fiq

r12_fiq

r10_fiq

r11_fiq

r9_fiq

r8_fiq

sprsr_fiqsprsr_fiqsprsr_fiqsprsr_fiqsprsr_fiqspsr_undef

The ARM Instruction Set - ARM University Program - V1.0 5

Register Example:
User to FIQ Mode

spsr_fiq

cpsr

r7

r4

r5

r2

r1

r0

r3

r6

r15 (pc)

r14_fiq

r13_fiq

r12_fiq

r10_fiq

r11_fiq

r9_fiq

r8_fiq

r14 (lr)

r13 (sp)

r12

r10

r11

r9

r8

User mode CPSR copied to FIQ mode SPSR

cpsr

r15 (pc)

r14 (lr)

r13 (sp)

r12

r10

r11

r9

r8

r7

r4

r5

r2

r1

r0

r3

r6

r14_fiq

r13_fiq

r12_fiq

r10_fiq

r11_fiq

r9_fiq

r8_fiq

Return address calculated from User mode
PC value and stored in FIQ mode LR

Registers in use Registers in use

EXCEPTION

User Mode FIQ Mode

spsr_fiq

The ARM Instruction Set - ARM University Program - V1.0 6

Accessing Registers using
ARM Instructions

* No breakdown of currently accessible registers.
• All instructions can access r0-r14 directly.

• Most instructions also allow use of the PC.

* Specific instructions to allow access to CPSR and SPSR.
* Note : When in a privileged mode, it is also possible to load / store the

(banked out) user mode registers to or from memory.
• See later for details.

The ARM Instruction Set - ARM University Program - V1.0 7

The Program Status Registers
(CPSR and SPSRs)

Copies of the ALU status flags (latched if the
instruction has the "S" bit set).

N = Negative result from ALU flag.
Z = Zero result from ALU flag.
C = ALU operation Carried out
V = ALU operation oVerflowed

* Interrupt Disable bits.
I = 1, disables the IRQ.
F = 1, disables the FIQ.

* T Bit (Architecture v4T only)
T = 0, Processor in ARM state
T = 1, Processor in Thumb state

* Condition Code Flags

ModeN Z C V

2831 8 4 0

I F T

* Mode Bits
M[4:0] define the processor mode.

The ARM Instruction Set - ARM University Program - V1.0 8

Logical Instruction Arithmetic Instruction

Flag

Negative No meaning Bit 31 of the result has been set
(N=‘1’) Indicates a negative number in

signed operations

Zero Result is all zeroes Result of operation was zero
(Z=‘1’)

Carry After Shift operation Result was greater than 32 bits
(C=‘1’) ‘1’ was left in carry flag

oVerflow No meaning Result was greater than 31 bits
(V=‘1’) Indicates a possible corruption of

the sign bit in signed
numbers

Condition Flags

The ARM Instruction Set - ARM University Program - V1.0 9

* When the processor is executing in ARM state:
• All instructions are 32 bits in length

• All instructions must be word aligned

• Therefore the PC value is stored in bits [31:2] with bits [1:0] equal to
zero (as instruction cannot be halfword or byte aligned).

* R14 is used as the subroutine link register (LR) and stores the return
address when Branch with Link operations are performed,
calculated from the PC.

* Thus to return from a linked branch
• MOV r15,r14

or
• MOV pc,lr

The Program Counter (R15)

The ARM Instruction Set - ARM University Program - V1.0 10

* When an exception occurs, the core:
• Copies CPSR into SPSR_<mode>

• Sets appropriate CPSR bits

� If core implements ARM Architecture 4T and is
currently in Thumb state, then

� ARM state is entered.

� Mode field bits

� Interrupt disable flags if appropriate.

• Maps in appropriate banked registers

• Stores the “return address” in LR_<mode>

• Sets PC to vector address

* To return, exception handler needs to:
• Restore CPSR from SPSR_<mode>

• Restore PC from LR_<mode>

Exception Handling
and the Vector Table

0x00000000

0x0000001C

0x00000018

0x00000014

0x00000010

0x0000000C

0x00000008

0x00000004

Reset

Undefined Instruction

FIQ

IRQ

Reserved

Data Abort

Prefetch Abort

Software Interrupt

The ARM Instruction Set - ARM University Program - V1.0 11

The Instruction Pipeline

* The ARM uses a pipeline in order to increase the speed of the flow of
instructions to the processor.

• Allows several operations to be undertaken simultaneously, rather than
serially.

* Rather than pointing to the instruction being executed, the
PC points to the instruction being fetched.

FETCH

DECODE

EXECUTE

Instruction fetched from memory

Decoding of registers used in instruction

Register(s) read from Register Bank
Shift and ALU operation
Write register(s) back to Register Bank

PC

PC - 4

PC - 8

ARM

The ARM Instruction Set - ARM University Program - V1.0 12

Quiz #1 - Verbal

* What registers are used to store the program counter and link register?

* What is r13 often used to store?

* Which mode, or modes has the fewest available number of registers
available? How many and why?

The ARM Instruction Set - ARM University Program - V1.0 13

ARM Instruction Set Format
Instruction type

Data processing / PSR Transfer

Multiply

Long Multiply (v3M / v4 only)

Swap

Load/Store Byte/Word

Load/Store Multiple

Halfword transfer : Immediate offset (v4 only)

Halfword transfer: Register offset (v4 only)

Branch

Branch Exchange (v4T only)

Coprocessor data transfer

Coprocessor data operation

Coprocessor register transfer

Software interrupt

Cond 0 0 I Opcode S Rn Rd Operand2

Cond 0 0 0 0 0 0 A S Rd Rn Rs 1 0 0 1 Rm

Cond 0 0 0 1 0 B 0 0 Rn Rd 0 0 0 0 1 0 0 1 Rm

Cond 0 1 I P U B W L Rn Rd Offset

Cond 1 0 0 P U S W L Rn Register List

Cond 0 0 0 0 1 U A S RdHi RdLo Rs 1 0 0 1 Rm

Cond 0 0 0 P U 1 W L Rn Rd Offset1 1 S H 1 Offset2

Cond 1 0 1 L Offset

Cond 1 1 0 P U N W L Rn CRd CPNum Offset

Cond 1 1 1 0 Op1 CRn CRd CPNum Op2 0 CRm

Cond 1 1 1 0 Op1 L CRn Rd CPNum Op2 1 CRm

Cond 1 1 1 1 SWI Number

Cond 0 0 0 1 0 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 1 Rn

Cond 0 0 0 P U 0 W L Rn Rd 0 0 0 0 1 S H 1 Rm

31 2827 1615 87 0

The ARM Instruction Set - ARM University Program - V1.0 14

Conditional Execution

* Most instruction sets only allow branches to be executed conditionally.
* However by reusing the condition evaluation hardware, ARM effectively

increases number of instructions.

• All instructions contain a condition field which determines whether the
CPU will execute them.

• Non-executed instructions soak up 1 cycle.

– Still have to complete cycle so as to allow fetching and decoding of
following instructions.

* This removes the need for many branches, which stall the pipeline (3
cycles to refill).

• Allows very dense in-line code, without branches.

• The Time penalty of not executing several conditional instructions is
frequently less than overhead of the branch
or subroutine call that would otherwise be needed.

The ARM Instruction Set - ARM University Program - V1.0 15

The Condition Field

2831 24 20 16 12 8 4 0

Cond

0000 = EQ - Z set (equal)

0001 = NE - Z clear (not equal)

0010 = HS / CS - C set (unsigned
higher or same)

0011 = LO / CC - C clear (unsigned
lower)

0100 = MI -N set (negative)

0101 = PL - N clear (positive or
zero)

0110 = VS - V set (overflow)

0111 = VC - V clear (no overflow)

1000 = HI - C set and Z clear
(unsigned higher)

1001 = LS - C clear or Z (set unsigned
lower or same)

1010 = GE - N set and V set, or N clear
and V clear (>or =)

1011 = LT - N set and V clear, or N clear
and V set (>)

1100 = GT - Z clear, and either N set and
V set, or N clear and V set (>)

1101 = LE - Z set, or N set and V clear,or
N clear and V set (<, or =)

1110 = AL - always

1111 = NV - reserved.

The ARM Instruction Set - ARM University Program - V1.0 16

Using and updating the
Condition Field

* To execute an instruction conditionally, simply postfix it with the
appropriate condition:

• For example an add instruction takes the form:
– ADD r0,r1,r2 ; r0 = r1 + r2 (ADDAL)

• To execute this only if the zero flag is set:
– ADDEQ r0,r1,r2 ; If zero flag set then…

; ... r0 = r1 + r2

* By default, data processing operations do not affect the condition flags
(apart from the comparisons where this is the only effect). To cause the
condition flags to be updated, the S bit of the instruction needs to be set
by postfixing the instruction (and any condition code) with an “S”.

• For example to add two numbers and set the condition flags:
– ADDS r0,r1,r2 ; r0 = r1 + r2

; ... and set flags

The ARM Instruction Set - ARM University Program - V1.0 17

* Branch : B{<cond>} label

* Branch with Link : BL{<cond>} sub_routine_label

* The offset for branch instructions is calculated by the assembler:
• By taking the difference between the branch instruction and the

target address minus 8 (to allow for the pipeline).

• This gives a 26 bit offset which is right shifted 2 bits (as the
bottom two bits are always zero as instructions are word –
aligned) and stored into the instruction encoding.

• This gives a range of � 32 Mbytes.

Branch instructions (1)

2831 24 0

Cond 1 0 1 L Offset

Condition field

Link bit 0 = Branch
1 = Branch with link

232527

The ARM Instruction Set - ARM University Program - V1.0 18

Branch instructions (2)

* When executing the instruction, the processor:
• shifts the offset left two bits, sign extends it to 32 bits, and adds it to PC.

* Execution then continues from the new PC, once the pipeline has been
refilled.

* The "Branch with link" instruction implements a subroutine call by
writing PC-4 into the LR of the current bank.

• i.e. the address of the next instruction following the branch with link
(allowing for the pipeline).

* To return from subroutine, simply need to restore the PC from the LR:
• MOV pc, lr

• Again, pipeline has to refill before execution continues.

* The "Branch" instruction does not affect LR.
* Note: Architecture 4T offers a further ARM branch instruction, BX

• See Thumb Instruction Set Module for details.

The ARM Instruction Set - ARM University Program - V1.0 19

Data processing Instructions

* Largest family of ARM instructions, all sharing the same instruction
format.

* Contains:

• Arithmetic operations

• Comparisons (no results - just set condition codes)

• Logical operations

• Data movement between registers

* Remember, this is a load / store architecture
• These instruction only work on registers, NOT memory.

* They each perform a specific operation on one or two operands.
• First operand always a register - Rn

• Second operand sent to the ALU via barrel shifter.

* We will examine the barrel shifter shortly.

The ARM Instruction Set - ARM University Program - V1.0 20

Arithmetic Operations

* Operations are:
• ADD operand1 + operand2

• ADC operand1 + operand2 + carry

• SUB operand1 - operand2

• SBC operand1 - operand2 + carry -1

• RSB operand2 - operand1

• RSC operand2 - operand1 + carry - 1

* Syntax:
• <Operation>{<cond>}{S} Rd, Rn, Operand2

* Examples
• ADD r0, r1, r2

• SUBGT r3, r3, #1

• RSBLES r4, r5, #5

The ARM Instruction Set - ARM University Program - V1.0 21

Comparisons

* The only effect of the comparisons is to
• UPDATE THE CONDITION FLAGS. Thus no need to set S bit.

* Operations are:
• CMP operand1 - operand2, but result not written

• CMN operand1 + operand2, but result not written

• TST operand1 AND operand2, but result not written

• TEQ operand1 EOR operand2, but result not written

* Syntax:
• <Operation>{<cond>} Rn, Operand2

* Examples:
• CMP r0, r1

• TSTEQ r2, #5

The ARM Instruction Set - ARM University Program - V1.0 22

Logical Operations

* Operations are:
• AND operand1 AND operand2

• EOR operand1 EOR operand2

• ORR operand1 OR operand2

• BIC operand1 AND NOT operand2 [ie bit clear]

* Syntax:
• <Operation>{<cond>}{S} Rd, Rn, Operand2

* Examples:
• AND r0, r1, r2

• BICEQ r2, r3, #7

• EORS r1,r3,r0

The ARM Instruction Set - ARM University Program - V1.0 23

Data Movement

* Operations are:
• MOV operand2

• MVN NOT operand2

Note that these make no use of operand1.
* Syntax:

• <Operation>{<cond>}{S} Rd, Operand2

* Examples:
• MOV r0, r1

• MOVS r2, #10

• MVNEQ r1,#0

The ARM Instruction Set - ARM University Program - V1.0 24

Quiz #2

Start

Stopr0 = r1
?

r0 > r1
?

r0 = r0 - r1 r1 = r1 - r0

Yes

No Yes

No

* Convert the GCD
algorithm given in this
flowchart into

1) “Normal” assembler,
where only branches can
be conditional.

2) ARM assembler, where
all instructions are
conditional, thus
improving code density.

* The only instructions you
need are CMP, B and SUB.

The ARM Instruction Set - ARM University Program - V1.0 25

Quiz #2 - Sample Solutions

“Normal” Assembler

gcd cmp r0, r1 ;reached the end?

beq stop

blt less ;if r0 > r1

sub r0, r0, r1 ;subtract r1 from r0

bal gcd

less sub r1, r1, r0 ;subtract r0 from r1

bal gcd

stop

ARM Conditional Assembler

gcd cmp r0, r1 ;if r0 > r1

subgt r0, r0, r1 ;subtract r1 from r0

sublt r1, r1, r0 ;else subtract r0 from r1

bne gcd ;reached the end?

The ARM Instruction Set - ARM University Program - V1.0 26

The Barrel Shifter

* The ARM doesn’t have actual shift instructions.

* Instead it has a barrel shifter which provides a mechanism to carry out
shifts as part of other instructions.

* So what operations does the barrel shifter support?

The ARM Instruction Set - ARM University Program - V1.0 27

* Shifts left by the specified amount (multiplies by powers of two) e.g.
LSL #5 = multiply by 32

Barrel Shifter - Left Shift

Logical Shift Left (LSL)

DestinationCF 0

The ARM Instruction Set - ARM University Program - V1.0 28

Logical Shift Right
•Shifts right by the
specified amount
(divides by powers of
two) e.g.

LSR #5 = divide by 32

Arithmetic Shift Right
•Shifts right (divides by
powers of two) and
preserves the sign bit,
for 2's complement
operations. e.g.

ASR #5 = divide by 32

Barrel Shifter - Right Shifts

Destination CF

Destination CF

Logical Shift Right

Arithmetic Shift Right

...0

Sign bit shifted in

The ARM Instruction Set - ARM University Program - V1.0 29

Barrel Shifter - Rotations
Rotate Right (ROR)

• Similar to an ASR but the
bits wrap around as they
leave the LSB and appear as
the MSB.

e.g. ROR #5

• Note the last bit rotated is
also used as the Carry Out.

Rotate Right Extended (RRX)

• This operation uses the
CPSR C flag as a 33rd bit.

• Rotates right by 1 bit.
Encoded as ROR #0.

Destination CF

Rotate Right

Destination CF

Rotate Right through Carry

The ARM Instruction Set - ARM University Program - V1.0 30

Using the Barrel Shifter:
The Second Operand

* Immediate value

• 8 bit number

• Can be rotated right through
an even number of
positions.

• Assembler will calculate
rotate for you from
constant.

* Register, optionally with shift
operation applied.

* Shift value can be either be:

• 5 bit unsigned integer

• Specified in bottom byte of
another register.

Operand
1

Result

ALU

Barrel
Shifter

Operand
2

The ARM Instruction Set - ARM University Program - V1.0 31

Second Operand :
Shifted Register

* The amount by which the register is to be shifted is contained in
either:

• the immediate 5-bit field in the instruction

– NO OVERHEAD

– Shift is done for free - executes in single cycle.

• the bottom byte of a register (not PC)

– Then takes extra cycle to execute

– ARM doesn’t have enough read ports to read 3 registers at
once.

– Then same as on other processors where shift is
separate instruction.

* If no shift is specified then a default shift is applied: LSL #0
• i.e. barrel shifter has no effect on value in register.

The ARM Instruction Set - ARM University Program - V1.0 32

Second Operand :
Using a Shifted Register

* Using a multiplication instruction to multiply by a constant means first
loading the constant into a register and then waiting a number of
internal cycles for the instruction to complete.

* A more optimum solution can often be found by using some combination
of MOVs, ADDs, SUBs and RSBs with shifts.

• Multiplications by a constant equal to a ((power of 2) � 1) can be done in
one cycle.

* Example: r0 = r1 * 5
Example: r0 = r1 + (r1 * 4)

ï ADD r0, r1, r1, LSL #2
* Example: r2 = r3 * 105

Example: r2 = r3 * 15 * 7
Example: r2 = r3 * (16 - 1) * (8 - 1)

ï RSB r2, r3, r3, LSL #4 ; r2 = r3 * 15
ï RSB r2, r2, r2, LSL #3 ; r2 = r2 * 7

The ARM Instruction Set - ARM University Program - V1.0 33

Second Operand :
Immediate Value (1)

* There is no single instruction which will load a 32 bit immediate constant
into a register without performing a data load from memory.

• All ARM instructions are 32 bits long

• ARM instructions do not use the instruction stream as data.

* The data processing instruction format has 12 bits available for
operand2

• If used directly this would only give a range of 4096.

* Instead it is used to store 8 bit constants, giving a range of 0 - 255.
* These 8 bits can then be rotated right through an even number of

positions (ie RORs by 0, 2, 4,..30).
• This gives a much larger range of constants that can be directly loaded,

though some constants will still need to be loaded
from memory.

The ARM Instruction Set - ARM University Program - V1.0 34

Second Operand :
Immediate Value (2)

* This gives us:
• 0 - 255 [0 - 0xff]

• 256,260,264,..,1020 [0x100-0x3fc, step 4, 0x40-0xff ror 30]

• 1024,1040,1056,..,4080 [0x400-0xff0, step 16, 0x40-0xff ror 28]

• 4096,4160, 4224,..,16320 [0x1000-0x3fc0, step 64, 0x40-0xff ror 26]

* These can be loaded using, for example:
• MOV r0, #0x40, 26 ; => MOV r0, #0x1000 (ie 4096)

* To make this easier, the assembler will convert to this form for us if
simply given the required constant:

• MOV r0, #4096 ; => MOV r0, #0x1000 (ie 0x40 ror 26)

* The bitwise complements can also be formed using MVN:
• MOV r0, #0xFFFFFFFF ; assembles to MVN r0, #0

* If the required constant cannot be generated, an error will
be reported.

The ARM Instruction Set - ARM University Program - V1.0 35

Loading full 32 bit constants

* Although the MOV/MVN mechansim will load a large range of constants
into a register, sometimes this mechansim will not generate the required
constant.

* Therefore, the assembler also provides a method which will load ANY 32
bit constant:

• LDR rd,=numeric constant

* If the constant can be constructed using either a MOV or MVN then this
will be the instruction actually generated.

* Otherwise, the assembler will produce an LDR instruction with a PC-
relative address to read the constant from a literal pool.

• LDR r0,=0x42 ; generates MOV r0,#0x42

• LDR r0,=0x55555555 ; generate LDR r0,[pc, offset to lit pool]

* As this mechanism will always generate the best instruction for a given
case, it is the recommended way of loading constants.

The ARM Instruction Set - ARM University Program - V1.0 36

Multiplication Instructions

* The Basic ARM provides two multiplication instructions.
* Multiply

• MUL{<cond>}{S} Rd, Rm, Rs ; Rd = Rm * Rs

* Multiply Accumulate - does addition for free
• MLA{<cond>}{S} Rd, Rm, Rs,Rn ; Rd = (Rm * Rs) + Rn

* Restrictions on use:
• Rd and Rm cannot be the same register

– Can be avoid by swapping Rm and Rs around. This works because
multiplication is commutative.

• Cannot use PC.

These will be picked up by the assembler if overlooked.
* Operands can be considered signed or unsigned

• Up to user to interpret correctly.

The ARM Instruction Set - ARM University Program - V1.0 37

Multiplication Implementation

* The ARM makes use of Booth’s Algorithm to perform integer
multiplication.

* On non-M ARMs this operates on 2 bits of Rs at a time.

• For each pair of bits this takes 1 cycle (plus 1 cycle to start with).

• However when there are no more 1’s left in Rs, the multiplication will
early-terminate.

* Example: Multiply 18 and -1 : Rd = Rm * Rs

* Note: Compiler does not use early termination criteria to
decide on which order to place operands.

0 0 0 0 0 0 1 00 0 0 10 0 0 00 0 0 00 0 0 0 0 0 0 0 0 0 0 0

1 1 1 1 1 1 1 11 1 1 11 1 1 11 1 1 11 1 1 1 1 1 1 1 1 1 1 1

Rm

Rs

17 cycles

Rs

Rm

4 cycles

18

-1

18

-1

The ARM Instruction Set - ARM University Program - V1.0 38

Extended Multiply Instructions

* M variants of ARM cores contain extended multiplication
hardware. This provides three enhancements:

• An 8 bit Booth’s Algorithm is used

– Multiplication is carried out faster (maximum for standard
instructions is now 5 cycles).

• Early termination method improved so that now completes
multiplication when all remaining bit sets contain

– all zeroes (as with non-M ARMs), or

– all ones.

Thus the previous example would early terminate in 2 cycles in
both cases.

• 64 bit results can now be produced from two 32bit operands

– Higher accuracy.

– Pair of registers used to store result.

The ARM Instruction Set - ARM University Program - V1.0 39

Multiply-Long and
Multiply-Accumulate Long

* Instructions are
• MULL which gives RdHi,RdLo:=Rm*Rs

• MLAL which gives RdHi,RdLo:=(Rm*Rs)+RdHi,RdLo

* However the full 64 bit of the result now matter (lower precision
multiply instructions simply throws top 32bits away)

• Need to specify whether operands are signed or unsigned

* Therefore syntax of new instructions are:
• UMULL{<cond>}{S} RdLo,RdHi,Rm,Rs

• UMLAL{<cond>}{S} RdLo,RdHi,Rm,Rs

• SMULL{<cond>}{S} RdLo, RdHi, Rm, Rs

• SMLAL{<cond>}{S} RdLo, RdHi, Rm, Rs

* Not generated by the compiler.

Warning : Unpredictable on non-M ARMs.

The ARM Instruction Set - ARM University Program - V1.0 40

Quiz #3
1. Specify instructions which will implement the following:

a) r0 = 16 b) r1 = r0 * 4

c) r0 = r1 / 16 (r1 signed 2's comp.) d) r1 = r2 * 7

2. What will the following instructions do?

a) ADDS r0, r1, r1, LSL #2 b) RSB r2, r1, #0

3. What does the following instruction sequence do?
ADD r0, r1, r1, LSL #1

SUB r0, r0, r1, LSL #4

ADD r0, r0, r1, LSL #7

The ARM Instruction Set - ARM University Program - V1.0 41

Load / Store Instructions

* The ARM is a Load / Store Architecture:
• Does not support memory to memory data processing operations.

• Must move data values into registers before using them.

* This might sound inefficient, but in practice isn’t:
• Load data values from memory into registers.

• Process data in registers using a number of data processing
instructions which are not slowed down by memory access.

• Store results from registers out to memory.

* The ARM has three sets of instructions which interact with main
memory. These are:

• Single register data transfer (LDR / STR).

• Block data transfer (LDM/STM).

• Single Data Swap (SWP).

The ARM Instruction Set - ARM University Program - V1.0 42

Single register data transfer

* The basic load and store instructions are:
• Load and Store Word or Byte

– LDR / STR / LDRB / STRB

* ARM Architecture Version 4 also adds support for halfwords and signed
data.

• Load and Store Halfword

– LDRH / STRH

• Load Signed Byte or Halfword - load value and sign extend it to 32 bits.

– LDRSB / LDRSH

* All of these instructions can be conditionally executed by inserting the
appropriate condition code after STR / LDR.

• e.g. LDREQB

* Syntax:
• <LDR|STR>{<cond>}{<size>} Rd, <address>

The ARM Instruction Set - ARM University Program - V1.0 43

Load and Store Word or Byte:
Base Register

* The memory location to be accessed is held in a base register
• STR r0, [r1] ; Store contents of r0 to location pointed to

; by contents of r1.

• LDR r2, [r1] ; Load r2 with contents of memory location
; pointed to by contents of r1.

r1

0x200
Base

Register

Memory

0x50x200

r0

0x5
Source

Register
for STR

r2

0x5
Destination

Register
for LDR

The ARM Instruction Set - ARM University Program - V1.0 44

Load and Store Word or Byte:
Offsets from the Base Register

* As well as accessing the actual location contained in the base register,
these instructions can access a location offset from the base register
pointer.

* This offset can be
• An unsigned 12bit immediate value (ie 0 - 4095 bytes).

• A register, optionally shifted by an immediate value

* This can be either added or subtracted from the base register:
• Prefix the offset value or register with ‘+’ (default) or ‘-’.

* This offset can be applied:
• before the transfer is made: Pre-indexed addressing

– optionally auto-incrementing the base register, by postfixing the
instruction with an ‘!’.

• after the transfer is made: Post-indexed addressing

– causing the base register to be auto-incremented.

The ARM Instruction Set - ARM University Program - V1.0 45

Load and Store Word or Byte:
Pre-indexed Addressing

* Example: STR r0, [r1,#12]

* To store to location 0x1f4 instead use: STR r0, [r1,#-12]

* To auto-increment base pointer to 0x20c use: STR r0, [r1, #12]!

* If r2 contains 3, access 0x20c by multiplying this by 4:
• STR r0, [r1, r2, LSL #2]

r1

0x200
Base

Register

Memory

0x5

0x200

r0

0x5
Source

Register
for STR

Offset

12 0x20c

The ARM Instruction Set - ARM University Program - V1.0 46

Load and Store Word or Byte:
Post-indexed Addressing

* Example: STR r0, [r1], #12

* To auto-increment the base register to location 0x1f4 instead use:
• STR r0, [r1], #-12

* If r2 contains 3, auto-incremenet base register to 0x20c by multiplying
this by 4:

• STR r0, [r1], r2, LSL #2

r1

0x200
Original

Base
Register

Memory

0x50x200

r0

0x5
Source

Register
for STR

Offset

12 0x20c

r1

0x20c
Updated

Base
Register

The ARM Instruction Set - ARM University Program - V1.0 47

Load and Stores
with User Mode Privilege

* When using post-indexed addressing, there is a further form of
Load/Store Word/Byte:

• <LDR|STR>{<cond>}{B}T Rd, <post_indexed_address>

* When used in a privileged mode, this does the load/store with user mode
privilege.

• Normally used by an exception handler that is emulating a memory
access instruction that would normally execute in user mode.

The ARM Instruction Set - ARM University Program - V1.0 48

Example Usage of
Addressing Modes

* Imagine an array, the first element of which is pointed to by the contents
of r0.

* If we want to access a particular element,
then we can use pre-indexed addressing:

• r1 is element we want.

• LDR r2, [r0, r1, LSL #2]

* If we want to step through every
element of the array, for instance
to produce sum of elements in the
array, then we can use post-indexed addressing within a loop:

• r1 is address of current element (initially equal to r0).

• LDR r2, [r1], #4

Use a further register to store the address of final element,
so that the loop can be correctly terminated.

0

1

2

3

element

0

4

8

12

Memory
Offset

r0

Pointer to
start of array

The ARM Instruction Set - ARM University Program - V1.0 49

Offsets for Halfword and
Signed Halfword / Byte Access

* The Load and Store Halfword and Load Signed Byte or Halfword
instructions can make use of pre- and post-indexed addressing in much
the same way as the basic load and store instructions.

* However the actual offset formats are more constrained:
• The immediate value is limited to 8 bits (rather than 12 bits) giving an

offset of 0-255 bytes.

• The register form cannot have a shift applied to it.

The ARM Instruction Set - ARM University Program - V1.0 50

Effect of endianess

* The ARM can be set up to access its data in either little or big
endian format.

* Little endian:
• Least significant byte of a word is stored in bits 0-7 of an addressed

word.

* Big endian:
• Least significant byte of a word is stored in bits 24-31 of an

addressed word.

* This has no real relevance unless data is stored as words and then
accessed in smaller sized quantities (halfwords or bytes).

• Which byte / halfword is accessed will depend on the endianess of
the system involved.

The ARM Instruction Set - ARM University Program - V1.0 51

Endianess Example

Big-endianLittle-endian

r1 = 0x100

r0 = 0x11223344
31 24 23 16 15 8 7 0

11 22 33 44

31 24 23 16 15 8 7 0

11 22 33 44

31 24 23 16 15 8 7 0

44 33 22 11

31 24 23 16 15 8 7 0

00 00 00 44

31 24 23 16 15 8 7 0

00 00 00 11

r2 = 0x44 r2 = 0x11

STR r0, [r1]

LDRB r2, [r1]

r1 = 0x100Memory

The ARM Instruction Set - ARM University Program - V1.0 52

Quiz #4

* Write a segment of code that add together elements x to x+(n-1) of an
array, where the element x=0 is the first element of the array.

* Each element of the array is word sized (ie. 32 bits).

* The segment should use post-indexed addressing.
* At the start of your segments, you should assume that:

• r0 points to the start of the array.

• r1 = x

• r2 = n

r0

x

x + 1

x + (n - 1)

Elements

{n elements

0

The ARM Instruction Set - ARM University Program - V1.0 53

Quiz #4 - Sample Solution

ADD r0, r0, r1, LSL#2 ; Set r0 to address of element x

ADD r2, r0, r2, LSL#2 ; Set r2 to address of element n+1

MOV r1, #0 ; Initialise counter

loop

LDR r3, [r0], #4 ; Access element and move to next

ADD r1, r1, r3 ; Add contents to counter

CMP r0, r2 ; Have we reached element x+n?

BLT loop ; If not - repeat for

; next element

; on exit sum contained in r1

The ARM Instruction Set - ARM University Program - V1.0 54

Block Data Transfer (1)

Cond 1 0 0 P U S W L Rn Register list

Condition field Base register
Load/Store bit
0 = Store to memory
1 = Load from memory

Write- back bit
0 = no write-back
1 = write address into base

PSR and force user bit
0 = don’t load PSR or force user mode
1 = load PSR or force user mode

Up/Down bit
0 = Down; subtract offset from base
1 = Up ; add offset to base

Pre/Post indexing bit
0 = Post; add offset after transfer,
1 = Pre ; add offset before transfer

2831 22 16 023 21 1527 20 1924

Each bit corresponds to a particular
register. For example:
• Bit 0 set causes r0 to be transferred.
• Bit 0 unset causes r0 not to be transferred.
At least one register must be
transferred as the list cannot be empty.

* The Load and Store Multiple instructions (LDM / STM) allow betweeen
1 and 16 registers to be transferred to or from memory.

* The transferred registers can be either:

• Any subset of the current bank of registers (default).

• Any subset of the user mode bank of registers when in a priviledged
mode (postfix instruction with a ‘^’).

The ARM Instruction Set - ARM University Program - V1.0 55

Block Data Transfer (2)

* Base register used to determine where memory access should occur.
• 4 different addressing modes allow increment and decrement inclusive or

exclusive of the base register location.

• Base register can be optionally updated following the transfer (by
appending it with an ‘!’.

• Lowest register number is always transferred to/from lowest memory
location accessed.

* These instructions are very efficient for
• Saving and restoring context

– For this useful to view memory as a stack.

• Moving large blocks of data around memory

– For this useful to directly represent functionality of the instructions.

The ARM Instruction Set - ARM University Program - V1.0 56

Stacks

* A stack is an area of memory which grows as new data is “pushed” onto
the “top” of it, and shrinks as data is “popped” off the top.

* Two pointers define the current limits of the stack.

• A base pointer

– used to point to the “bottom” of the stack (the first location).

• A stack pointer

– used to point the current “top” of the stack.

SP
BASE

PUSH
{1,2,3}

1

2

3

BASE

SP

POP

1

2
Result of
pop = 3

BASE

SP

The ARM Instruction Set - ARM University Program - V1.0 57

Stack Operation

* Traditionally, a stack grows down in memory, with the last “pushed”
value at the lowest address. The ARM also supports ascending stacks,
where the stack structure grows up through memory.

* The value of the stack pointer can either:
• Point to the last occupied address (Full stack)

– and so needs pre-decrementing (ie before the push)

• Point to the next occupied address (Empty stack)

– and so needs post-decrementing (ie after the push)

* The stack type to be used is given by the postfix to the instruction:
• STMFD / LDMFD : Full Descending stack

• STMFA / LDMFA : Full Ascending stack.

• STMED / LDMED : Empty Descending stack

• STMEA / LDMEA : Empty Ascending stack

* Note: ARM Compiler will always use a Full descending stack.

The ARM Instruction Set - ARM University Program - V1.0 58

Stack Examples
STMFD sp!,

{r0,r1,r3-r5}

r5

r4

r3
r1

r0SP

Old SP

STMED sp!,
{r0,r1,r3-r5}

r5
r4
r3
r1
r0

SP

Old SP

r5
r4
r3
r1
r0

STMFA sp!,
{r0,r1,r3-r5}

SP

Old SP 0x400

0x418

0x3e8

STMEA sp!,
{r0,r1,r3-r5}

r5
r4
r3
r1
r0

SP

Old SP

The ARM Instruction Set - ARM University Program - V1.0 59

Stacks and Subroutines

* One use of stacks is to create temporary register workspace for
subroutines. Any registers that are needed can be pushed onto the stack
at the start of the subroutine and popped off again at the end so as to
restore them before return to the caller :

STMFD sp!,{r0-r12, lr} ; stack all registers

........ ; and the return address

........

LDMFD sp!,{r0-r12, pc} ; load all the registers

; and return automatically

* See the chapter on the ARM Procedure Call Standard in the SDT
Reference Manual for further details of register usage within
subroutines.

* If the pop instruction also had the ‘S’ bit set (using ‘^’) then the transfer
of the PC when in a priviledged mode would also cause the SPSR to be
copied into the CPSR (see exception handling module).

The ARM Instruction Set - ARM University Program - V1.0 60

Direct functionality of
Block Data Transfer

* When LDM / STM are not being used to implement stacks, it is clearer to
specify exactly what functionality of the instruction is:

• i.e. specify whether to increment / decrement the base pointer, before or
after the memory access.

* In order to do this, LDM / STM support a further syntax in addition to
the stack one:

• STMIA / LDMIA : Increment After

• STMIB / LDMIB : Increment Before

• STMDA / LDMDA : Decrement After

• STMDB / LDMDB : Decrement Before

The ARM Instruction Set - ARM University Program - V1.0 61

Example: Block Copy

• Copy a block of memory, which is an exact multiple of 12 words long
from the location pointed to by r12 to the location pointed to by r13. r14
points to the end of block to be copied.

; r12 points to the start of the source data

; r14 points to the end of the source data

; r13 points to the start of the destination data

loop LDMIA r12!, {r0-r11} ; load 48 bytes

STMIA r13!, {r0-r11} ; and store them

CMP r12, r14 ; check for the end

BNE loop ; and loop until done

• This loop transfers 48 bytes in 31 cycles

• Over 50 Mbytes/sec at 33 MHz

r13

r14

r12

Increasing
Memory

The ARM Instruction Set - ARM University Program - V1.0 62

Quiz #5

* The contents of registers r0 to r6 need to be swapped around thus:
• r0 moved into r3

• r1 moved into r4

• r2 moved into r6

• r3 moved into r5

• r4 moved into r0

• r5 moved into r1

• r6 moved into r2

* Write a segment of code that uses full descending stack operations to
carry this out, and hence requires no use of any other registers for
temporary storage.

The ARM Instruction Set - ARM University Program - V1.0 63

Quiz #5 - Sample Solution

STMFD sp!,
{r0-r6}

LDMFD sp!,
{r3,r4,r6}

r3 = r0
r4 = r1
r6 = r2

LDMFD sp!,
{r5}

r5 = r3

LDMFD sp!,
{r0-r2}

r0 = r4
r1 = r5
r2 = r6

Old SP

r5
r4
r3
r2
r1

SP

r6

r0

r5
r4

SP

r6

r3

r5
SP

r6

r4

SP

The ARM Instruction Set - ARM University Program - V1.0 64

* Atomic operation of a memory read followed by a memory write
which moves byte or word quantities between registers and
memory.

* Syntax:
• SWP{<cond>}{B} Rd, Rm, [Rn]

* Thus to implement an actual swap of contents make Rd = Rm.

* The compiler cannot produce this instruction.

Swap and Swap Byte
Instructions

Rm Rd

Rn

32

1
temp

Memory

The ARM Instruction Set - ARM University Program - V1.0 65

Software Interrupt (SWI)

* In effect, a SWI is a user-defined instruction.
* It causes an exception trap to the SWI hardware vector (thus causing a

change to supervisor mode, plus the associated state saving), thus causing
the SWI exception handler to be called.

* The handler can then examine the comment field of the instruction to
decide what operation has been requested.

* By making use of the SWI mechansim, an operating system can
implement a set of privileged operations which applications running in
user mode can request.

* See Exception Handling Module for further details.

2831 2427 0

Cond 1 1 1 1 Comment field (ignored by Processor)

Condition Field

23

The ARM Instruction Set - ARM University Program - V1.0 66

PSR Transfer Instructions

* MRS and MSR allow contents of CPSR/SPSR to be transferred from
appropriate status register to a general purpose register.

• All of status register, or just the flags, can be transferred.

* Syntax:
• MRS{<cond>} Rd,<psr> ; Rd = <psr>

• MSR{<cond>} <psr>,Rm ; <psr> = Rm

• MSR{<cond>} <psrf>,Rm ; <psrf> = Rm

where
• <psr> = CPSR, CPSR_all, SPSR or SPSR_all

• <psrf> = CPSR_flg or SPSR_flg

* Also an immediate form
• MSR{<cond>} <psrf>,#Immediate

• This immediate must be a 32-bit immediate, of which the 4
most significant bits are written to the flag bits.

The ARM Instruction Set - ARM University Program - V1.0 67

Using MRS and MSR

* Currently reserved bits, may be used in future, therefore:
• they must be preserved when altering PSR

• the value they return must not be relied upon when testing other bits.

* Thus read-modify-write strategy must be followed when modifying any
PSR:

• Transfer PSR to register using MRS

• Modify relevant bits

• Transfer updated value back to PSR using MSR

* Note:

• In User Mode, all bits can be read but only the flag bits can
be written to.

ModeN Z C V

2831 8 4 0

I F T

The ARM Instruction Set - ARM University Program - V1.0 68

Coprocessors

* The ARM architecture supports 16 coprocessors
* Each coprocessor instruction set occupies part of the ARM instruction

set.

* There are three types of coprocessor instruction
• Coprocessor data processing

• Coprocessor (to/from ARM) register transfers

• Coprocessor memory transfers (load and store to/from memory)

* Assembler macros can be used to transform custom coprocessor
mneumonics into the generic mneumonics understood by the processor.

* A coprocessor may be implemented
• in hardware

• in software (via the undefined instruction exception)

• in both (common cases in hardware, the rest in software)

The ARM Instruction Set - ARM University Program - V1.0 69

Coprocessor Data Processing

* This instruction initiates a coprocessor operation
* The operation is performed only on internal coprocessor state

• For example, a Floating point multiply, which multiplies the contents of
two registers and stores the result in a third register

* Syntax:
• CDP{<cond>} <cp_num>,<opc_1>,CRd,CRn,CRm,{<opc_2>}

31 28 27 26 25 24 23 20 19 16 15 12 11 8 7 5 4 3 0

Destination Register

Source Registers

Opcode

Condition Code Specifier
Opcode

Cond 1 1 1 0 opc_1 CRn CRd cp_num opc_2 0 CRm

The ARM Instruction Set - ARM University Program - V1.0 70

Coprocessor Register
Transfers

* These two instructions move data between ARM registers and
coprocessor registers

• MRC : Move to Register from Coprocessor

• MCR : Move to Coprocessor from Register

* An operation may also be performed on the data as it is transferred
• For example a Floating Point Convert to Integer instruction can be

implemented as a register transfer to ARM that also converts the data
from floating point format to integer format.

* Syntax
• <MRC|MCR>{<cond>} <cp_num>,<opc_1>,Rd,CRn,CRm,<opc_2>

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 8 7 5 4 3 0

ARM Source/Dest Register

Coprocesor Source/Dest Registers

Opcode

Condition Code Specifier
Opcode

Transfer To/From Coprocessor

Cond 1 1 1 0 opc_1 L CRn Rd cp_num opc_2 1 CRm

The ARM Instruction Set - ARM University Program - V1.0 71

Coprocessor Memory
Transfers (1)

* Load from memory to coprocessor registers
* Store to memory from coprocessor registers.

Pre/Post Increment

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 8 7 0

Source/Dest Register
Base Register

Load/Store
Base Register WritebackCondition Code Specifier

Transfer Length
Add/Subtract Offset

Address Offset

Cond 1 1 0 P U N W L Rn CRd cp_num Offset

The ARM Instruction Set - ARM University Program - V1.0 72

Coprocessor Memory
Transfers (2)

* Syntax of these is similar to word transfers between ARM and memory:

• <LDC|STC>{<cond>}{<L>} <cp_num>,CRd,<address>

– PC relative offset generated if possible, else causes an error.

• <LDC|STC>{<cond>}{<L>} <cp_num>,CRd,<[Rn,offset]{!}>

– Pre-indexed form, with optional writeback of the base register

• <LDC|STC>{<cond>}{<L>} <cp_num>,CRd,<[Rn],offset>

– Post-indexed form

where
• <L> when present causes a “long” transfer to be performed (N=1) else

causes a “short” transfer to be performed (N=0).

– Effect of this is coprocessor dependant.

The ARM Instruction Set - ARM University Program - V1.0 73

Quiz #6

* Write a short code segment that performs a mode change by modifying
the contents of the CPSR

• The mode you should change to is user mode which has the value 0x10.

• This assumes that the current mode is a priveleged mode such as
supervisor mode.

• This would happen for instance when the processor is reset - reset code
would be run in supervisor mode which would then need to switch to
user mode before calling the main routine in your application.

• You will need to use MSR and MRS, plus 2 logical operations.

ModeN Z C V

2831 8 4 0

I F T

The ARM Instruction Set - ARM University Program - V1.0 74

Quiz #6 - Sample Solution

* Set up useful constants:

mmask EQU 0x1f ; mask to clear mode bits

userm EQU 0x10 ; user mode value

* Start off here in supervisor mode.
MRS r0, cpsr ; take a copy of the CPSR

BIC r0,r0,#mmask ; clear the mode bits

ORR r0,r0,#userm ; select new mode

MSR cpsr, r0 ; write back the modified
; CPSR

* End up here in user mode.

The ARM Instruction Set - ARM University Program - V1.0 75

Main features of the
ARM Instruction Set

* All instructions are 32 bits long.
* Most instructions execute in a single cycle.

* Every instruction can be conditionally executed.
* A load/store architecture

• Data processing instructions act only on registers

– Three operand format

– Combined ALU and shifter for high speed bit manipulation

• Specific memory access instructions with powerful auto-indexing
addressing modes.

– 32 bit and 8 bit data types

and also 16 bit data types on ARM Architecture v4.

– Flexible multiple register load and store instructions

* Instruction set extension via coprocessors

